scholarly journals Molecular cloning and characterization of PLC-η2

2005 ◽  
Vol 391 (3) ◽  
pp. 667-676 ◽  
Author(s):  
Yixing Zhou ◽  
Michele R. Wing ◽  
John Sondek ◽  
T. Kendall Harden

PLC (phospholipase C) isoenzymes catalyse the conversion of PtdIns(4,5)P2 into the Ca2+-mobilizing second messenger, Ins(1,4,5)P3, and the protein kinase C-activating second messenger, diacylglycerol. With the goal of identifying additional mammalian PLC isoenzymes, we screened the NCBI non-redundant database using a BLAST algorithm for novel sequences with homology with the conserved PLC catalytic core. Two unique sequences corresponding to two unknown PLC isoenzymes were identified, and one of these, designated PLC-η2, was cloned and characterized. Most of the coding sequence of PLC-η2 was constructed from two ESTs (expressed sequence tags), which included an overlapping sequence that was confirmed by multiple ESTs and mRNAs. 5′-RACE (rapid amplification of cDNA ends) also identified an upstream exon not deduced from available EST or mRNA sequences. Sequence analysis of PLC-η2 revealed the canonical domains of a PLC isoenzyme with an additional long C-terminus that contains a class II PDZ-binding motif. Genomic analyses indicated that PLC-η2 is encoded by 23 exons. RT-PCR (reverse transcriptase-PCR) analyses illustrated expression of PLC-η2 in human retina and kidney, as well as in mouse brain, eye and lung. RT-PCR with exon-specific primers also revealed tissue-specific expression of four splice variants in mouse that represent alternative use of sequences in exons 21, 22 and 23. PLC-η2-specific antisera recognized one of these splice variants as an approx. 155 kDa species when expressed in COS-7 cells; PLC-η2 natively expressed in 1321N1 human astrocytoma cells also migrated as an approx. 155 kDa species. PLC activity was observed in vitro and in vivo for three different constructs of PLC-η2, each containing possible alternatively spliced first exons. Co-expression of PLC-η2 with Gβ1γ2 dimers of heterotrimeric G-proteins resulted in marked stimulation of inositol lipid hydrolysis. Thus PLC-η2 may in part function downstream of G-protein-coupled receptors.

Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2336-2339 ◽  
Author(s):  
Yoshiaki Okada ◽  
Enjing Jin ◽  
Vesna Nikolova-Krstevski ◽  
Kiichiro Yano ◽  
Ju Liu ◽  
...  

Abstract We recently demonstrated that the 3-kb 5′-flanking region of the human ROBO4 gene directs endothelial cell–specific expression in vitro and in vivo. Moreover, a GA-binding protein (GABP)–binding motif at −119 was necessary for mediating promoter activity in vitro. The goal of the present study was to confirm the functional relevance of the −119 GABP-binding site in vivo. To that end, the Hprt locus of mice was targeted with a Robo4-LacZ transgenic cassette in which the GABP site was mutated. In other studies, the GABP mutation was introduced into the endogenous mouse Robo4 locus in which LacZ was knocked-in. Compared with their respective controls, the mutant promoters displayed a significant reduction in activity in embryoid bodies, embryos, and adult animals. Together, these data provide strong support for the role of the GABP-binding motif in mediating Robo4 expression in the intact endothelium.


1999 ◽  
Vol 19 (2) ◽  
pp. 1068-1080 ◽  
Author(s):  
Peter D. Adams ◽  
Xiaotong Li ◽  
William R. Sellers ◽  
Kayla B. Baker ◽  
Xiaohong Leng ◽  
...  

ABSTRACT Stable association of certain proteins, such as E2F1 and p21, with cyclin-cdk2 complexes is dependent upon a conserved cyclin-cdk2 binding motif that contains the core sequence ZRXL, where Z and X are usually basic. In vitro phosphorylation of the retinoblastoma tumor suppressor protein, pRB, by cyclin A-cdk2 and cyclin E-cdk2 was inhibited by a short peptide spanning the cyclin-cdk2 binding motif present in E2F1. Examination of the pRB C terminus revealed that it contained sequence elements related to ZRXL. Site-directed mutagenesis of one of these sequences, beginning at residue 870, impaired the phosphorylation of pRB in vitro. A synthetic peptide spanning this sequence also inhibited the phosphorylation of pRB in vitro. pRB C-terminal truncation mutants lacking this sequence were hypophosphorylated in vitro and in vivo despite the presence of intact cyclin-cdk phosphoacceptor sites. Phosphorylation of such mutants was restored by fusion to the ZRXL-like motif derived from pRB or to the ZRXL motifs from E2F1 or p21. Phospho-site-specific antibodies revealed that certain phosphoacceptor sites strictly required a C-terminal ZRXL motif whereas at least one site did not. Furthermore, this residual phosphorylation was sufficient to inactivate pRB in vivo, implying that there are additional mechanisms for directing cyclin-cdk complexes to pRB. Thus, the C terminus of pRB contains a cyclin-cdk interaction motif of the type found in E2F1 and p21 that enables it to be recognized and phosphorylated by cyclin-cdk complexes.


2009 ◽  
Vol 7 (1) ◽  
pp. nrs.07007 ◽  
Author(s):  
Michiel van der Vaart ◽  
Marcel J.M. Schaaf

Alternative mRNA splicing in the region encoding the C-terminus of nuclear receptors results in receptor variants lacking the entire ligand-binding domain (LBD), or a part of it, and instead contain a sequence of splice variant-specific C-terminal amino acids. A total of thirteen such splice variants have been shown to occur in vertebrates, and at least nine occur in humans. None of these receptor variants appear to be able to bind endogenous ligands and to induce transcription on promoters containing the response element for the respective canonical receptor variant. Interestingly, ten of these C-terminal splice variants have been shown to display dominant-negative activity on the transactivational properties of their canonical equivalent. Research on most of these splice variants has been limited, and the dominant-negative effect of these receptor variants has only been demonstrated in reporter assays in vitro, using transiently transfected receptors and reporter constructs. Therefore, the in vivo function and relevance of most C-terminal splice variants remains unclear. By reviewing the literature on the human glucocorticoid receptor β-isoform (hGRβ), we show that the dominant-negative effect of hGRβ is well established using more physiologically relevant readouts. The hGR β-isoform may alter gene transcription independent from the canonical receptor and increased hGRβ levels correlate with glucocorticoid resistance and the occurrence of several immune-related diseases. Thus, available data suggests that C-terminal splice variants of nuclear receptors act as dominant-negative inhibitors of receptor-mediated signaling in vivo, and that aberrant expression of these isoforms may be involved in the pathogenesis of a variety of diseases.


2008 ◽  
Vol 29 (3) ◽  
pp. 822-834 ◽  
Author(s):  
Pernilla von Nandelstadh ◽  
Mohamed Ismail ◽  
Chiara Gardin ◽  
Heli Suila ◽  
Ivano Zara ◽  
...  

ABSTRACT Interactions between Z-disc proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disc components myotilin, ZASP/Cypher, and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We report here that the myotilin and the FATZ (calsarcin/myozenin) families share high homology at their final C-terminal five amino acids. This C-terminal E[ST][DE][DE]L motif is present almost exclusively in these families and is evolutionary conserved. We show by in vitro and in vivo studies that proteins from the myotilin and FATZ (calsarcin/myozenin) families interact via this novel type of class III PDZ binding motif with the PDZ domains of ZASP/Cypher and other Enigma family members: ALP, CLP-36, and RIL. We show that the interactions can be modulated by phosphorylation. Calmodulin-dependent kinase II phosphorylates the C terminus of FATZ-3 (calsarcin-3/myozenin-3) and myotilin, whereas PKA phosphorylates that of FATZ-1 (calsarcin-2/myozenin-1) and FATZ-2 (calsarcin-1/myozenin-1). This is the first report of a binding motif common to both the myotilin and the FATZ (calsarcin/myozenin) families that is specific for interactions with Enigma family members.


2021 ◽  
Author(s):  
Stuart Sullivan ◽  
Thomas Waksman ◽  
Louise Henderson ◽  
Dimitra Paliogianni ◽  
Melanie Lütkemeyer ◽  
...  

Polarity underlies all plant physiology and directional growth responses such as phototropism. Yet, our understanding of how plant tropic responses are established is far from complete. The plasma-membrane associated BTB-containing protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by AGC kinases known as the phototropins (phots). However, the mechanism by which phots initiate phototropic signalling via NPH3, and other NPH3/RPT2-like (NRL) members, has remained unresolved. Here we demonstrate that NPH3 is directly phosphorylated by phot1 both in vitro and in vivo. Light-dependent phosphorylation within a conserved consensus sequence (RxS) located at the extreme C-terminus of NPH3 is necessary to promote its functionality for phototropism and petiole positioning in Arabidopsis. Phosphorylation of this region by phot1 also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Seedlings expressing mutants of NPH3 that are unable to bind or constitutively bind 14-3-3s show compromised functionality that is consistent with a model where signalling outputs arising from a gradient in NPH3 RxS phosphorylation/localisation across the stem are a major contributor to phototropic responsiveness. Our current findings provide further evidence that 14-3-3 proteins are instrumental components regulating auxin-dependent growth and show for the first time that NRL proteins are direct phosphorylation targets for plant AGC kinases. Moreover, the C-terminal phosphorylation site/14-3-3-binding motif of NPH3 is conserved in several members of the NRL family, suggesting a common mechanism of regulation.


2020 ◽  
Vol 477 (1) ◽  
pp. 173-189 ◽  
Author(s):  
Marco Pedretti ◽  
Carolina Conter ◽  
Paola Dominici ◽  
Alessandra Astegno

Arabidopsis centrin 2, also known as calmodulin-like protein 19 (CML19), is a member of the EF-hand superfamily of calcium (Ca2+)-binding proteins. In addition to the notion that CML19 interacts with the nucleotide excision repair protein RAD4, CML19 was suggested to be a component of the transcription export complex 2 (TREX-2) by interacting with SAC3B. However, the molecular determinants of this interaction have remained largely unknown. Herein, we identified a CML19-binding site within the C-terminus of SAC3B and characterized the binding properties of the corresponding 26-residue peptide (SAC3Bp), which exhibits the hydrophobic triad centrin-binding motif in a reversed orientation (I8W4W1). Using a combination of spectroscopic and calorimetric experiments, we shed light on the SAC3Bp–CML19 complex structure in solution. We demonstrated that the peptide interacts not only with Ca2+-saturated CML19, but also with apo-CML19 to form a protein–peptide complex with a 1 : 1 stoichiometry. Both interactions involve hydrophobic and electrostatic contributions and include the burial of Trp residues of SAC3Bp. However, the peptide likely assumes different conformations upon binding to apo-CML19 or Ca2+-CML19. Importantly, the peptide dramatically increases the affinity for Ca2+ of CML19, especially of the C-lobe, suggesting that in vivo the protein would be Ca2+-saturated and bound to SAC3B even at resting Ca2+-levels. Our results, providing direct evidence that Arabidopsis SAC3B is a CML19 target and proposing that CML19 can bind to SAC3B through its C-lobe independent of a Ca2+ stimulus, support a functional role for these proteins in TREX-2 complex and mRNA export.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Sign in / Sign up

Export Citation Format

Share Document