scholarly journals Retinoblastoma Protein Contains a C-terminal Motif That Targets It for Phosphorylation by Cyclin-cdk Complexes

1999 ◽  
Vol 19 (2) ◽  
pp. 1068-1080 ◽  
Author(s):  
Peter D. Adams ◽  
Xiaotong Li ◽  
William R. Sellers ◽  
Kayla B. Baker ◽  
Xiaohong Leng ◽  
...  

ABSTRACT Stable association of certain proteins, such as E2F1 and p21, with cyclin-cdk2 complexes is dependent upon a conserved cyclin-cdk2 binding motif that contains the core sequence ZRXL, where Z and X are usually basic. In vitro phosphorylation of the retinoblastoma tumor suppressor protein, pRB, by cyclin A-cdk2 and cyclin E-cdk2 was inhibited by a short peptide spanning the cyclin-cdk2 binding motif present in E2F1. Examination of the pRB C terminus revealed that it contained sequence elements related to ZRXL. Site-directed mutagenesis of one of these sequences, beginning at residue 870, impaired the phosphorylation of pRB in vitro. A synthetic peptide spanning this sequence also inhibited the phosphorylation of pRB in vitro. pRB C-terminal truncation mutants lacking this sequence were hypophosphorylated in vitro and in vivo despite the presence of intact cyclin-cdk phosphoacceptor sites. Phosphorylation of such mutants was restored by fusion to the ZRXL-like motif derived from pRB or to the ZRXL motifs from E2F1 or p21. Phospho-site-specific antibodies revealed that certain phosphoacceptor sites strictly required a C-terminal ZRXL motif whereas at least one site did not. Furthermore, this residual phosphorylation was sufficient to inactivate pRB in vivo, implying that there are additional mechanisms for directing cyclin-cdk complexes to pRB. Thus, the C terminus of pRB contains a cyclin-cdk interaction motif of the type found in E2F1 and p21 that enables it to be recognized and phosphorylated by cyclin-cdk complexes.

2015 ◽  
Vol 112 (50) ◽  
pp. 15372-15377 ◽  
Author(s):  
Cuiyan Zhang ◽  
Xiaotong Li ◽  
Guillaume Adelmant ◽  
Jessica Dobbins ◽  
Christoph Geisen ◽  
...  

EP300-interacting inhibitor of differentiation 1 (EID1) belongs to a protein family implicated in the control of transcription, differentiation, DNA repair, and chromosomal maintenance. EID1 has a very short half-life, especially in G0 cells. We discovered that EID1 contains a peptidic, modular degron that is necessary and sufficient for its polyubiquitylation and proteasomal degradation. We found that this degron is recognized by an Skp1, Cullin, and F-box (SCF)-containing ubiquitin ligase complex that uses the F-box Only Protein 21 (FBXO21) as its substrate recognition subunit. SCFFBXO21 polyubiquitylates EID1 both in vitro and in vivo and is required for the efficient degradation of EID1 in both cycling and quiescent cells. The EID1 degron partially overlaps with its retinoblastoma tumor suppressor protein-binding domain and is congruent with a previously defined melanoma-associated antigen-binding motif shared by EID family members, suggesting that binding to retinoblastoma tumor suppressor and melanoma-associated antigen family proteins could affect the polyubiquitylation and turnover of EID family members in cells.


2008 ◽  
Vol 31 (4) ◽  
pp. 6
Author(s):  
Matthew J Cecchini ◽  
Frederick A Dick

Background/Purpose. The retinoblastoma tumor suppressor protein (pRB) plays a central role in proliferative control and is a frequent target for inactivation in cancer. The G1-Sphase transition of the cell cycle is regulated by pRB, which is capable of interacting with E2F family members and inhibiting the transcription of genesrequired to progress into S-phase. E2F1 is unique from other E2F family members as it can induce both apoptosis and proliferation. To control these contrasting functions of E2F1, a second E2F1 binding site exists in the C-terminus of pRB that can control apoptosis separately from proliferation. This anti-apoptotic function of pRBcan in some circumstances promote tumorigenesis, which leads to the question; is pRB a tumor suppressor or an oncogene? Methods. To investigate this, a gene-targeted mouse model is being engineered to selectively disrupt the ability of pRB to control proliferation through the general E2F binding site while still retaining the ability tocontrol apoptosis through the specific E2F1 site. Results. A series of novel mutants were engineered to selectively disrupt the binding of E2Fs at the general site, and prevent pRB from controlling proliferation. The mutants retain the ability to bind E2F1 and control apoptosis through thespecific binding site, which is not disrupted. Conclusions. By separating the ability of pRB to control proliferation and apoptosis under in vivo conditions, a better understanding into the significance of these two functions in development and tumorigenesis can be gained.


2001 ◽  
Vol 21 (14) ◽  
pp. 4773-4784 ◽  
Author(s):  
Sergei A. Ezhevsky ◽  
Alan Ho ◽  
Michelle Becker-Hapak ◽  
Penny K. Davis ◽  
Steven F. Dowdy

ABSTRACT The retinoblastoma tumor suppressor protein (pRB) negatively regulates early-G1 cell cycle progression, in part, by sequestering E2F transcription factors and repressing E2F-responsive genes. Although pRB is phosphorylated on up to 16 cyclin-dependent kinase (Cdk) sites by multiple G1 cyclin-Cdk complexes, the active form(s) of pRB in vivo remains unknown. pRB is present as an unphosphorylated protein in G0 quiescent cells and becomes hypophosphorylated (∼2 mol of PO4 to 1 mol of pRB) in early G1 and hyperphosphorylated (∼10 mol of PO4 to 1 mol of pRB) in late G1 phase. Here, we report that hypophosphorylated pRB, present in early G1, represents the biologically active form of pRB in vivo that is assembled with E2Fs and E1A but that both unphosphorylated pRB in G0 and hyperphosphorylated pRB in late G1 fail to become assembled with E2Fs and E1A. Furthermore, using transducible dominant-negative TAT fusion proteins that differentially target cyclin D-Cdk4 or cyclin D-Cdk6 (cyclin D-Cdk4/6) and cyclin E-Cdk2 complexes, namely, TAT-p16 and TAT–dominant-negative Cdk2, respectively, we found that, in vivo, cyclin D-Cdk4/6 complexes hypophosphorylate pRB in early G1 and that cyclin E-Cdk2 complexes inactivate pRB by hyperphosphorylation in late G1. Moreover, we found that cycling human tumor cells expressing deregulated cyclin D-Cdk4/6 complexes, due to deletion of the p16 INK4a gene, contained hypophosphorylated pRB that was bound to E2Fs in early G1and that E2F-responsive genes, including those for dihydrofolate reductase and cyclin E, were transcriptionally repressed. Thus, we conclude that, physiologically, pRB is differentially regulated by G1 cyclin-Cdk complexes.


2001 ◽  
Vol 21 (12) ◽  
pp. 3974-3985 ◽  
Author(s):  
Jack T. Zilfou ◽  
William H. Hoffman ◽  
Michael Sank ◽  
Donna L. George ◽  
Maureen Murphy

ABSTRACT While the transactivation function of the tumor suppressor p53 is well understood, less is known about the transrepression functions of this protein. We have previously shown that p53 interacts with the corepressor protein mSin3a (hereafter designated Sin3) in vivo and that this interaction is critical for the ability of p53 to repress gene expression. In the present study, we demonstrate that expression of Sin3 results in posttranslational stabilization of both exogenous and endogenous p53, due to an inhibition of proteasome-mediated degradation of this protein. Stabilization of p53 by Sin3 requires the Sin3-binding domain, determined here to map to the proline-rich region of p53, from amino acids 61 to 75. The correlation between Sin3 binding and stabilization supports the hypothesis that this domain of p53 may normally be subject to a destabilizing influence. The finding that a synthetic mutant of p53 lacking the Sin3-binding domain has an increased half-life in cells, compared to wild-type p53, supports this premise. Interestingly, unlike retinoblastoma tumor suppressor protein, MDMX, and p14ARF, Sin3 stabilizes p53 in an MDM2-independent manner. The ability of Sin3 to stabilize p53 is consistent with the model whereby these two proteins must exist on a promoter for extended periods, in order for repression to be an effective mechanism of gene regulation. This model is consistent with our data indicating that, unlike the p300-p53 complex, the p53-Sin3 complex is immunologically detectable for prolonged periods following exposure of cells to agents of DNA damage.


2021 ◽  
Author(s):  
Tao Wei ◽  
Miranda Grace ◽  
Aayushi Uberoi ◽  
James C Romero-Masters ◽  
Denis Lee ◽  
...  

The species specificity of papillomaviruses has been a significant roadblock for performing in vivo pathogenesis studies in common model organisms. The Mus musculus papillomavirus type 1 (MmuPV1) causes cutaneous papillomas that can progress to squamous cell carcinomas in laboratory mice. The papillomavirus E6 and E7 genes encode proteins that establish and maintain a cellular milieu that allows for viral genome synthesis and viral progeny synthesis in growth-arrested, terminally differentiated keratinocytes. The E6 and E7 proteins provide this activity by binding to and functionally reprogramming key cellular regulatory proteins. The MmuPV1 E7 protein lacks the canonical LXCXE motif that mediates the binding of multiple viral oncoproteins to the cellular retinoblastoma tumor suppressor protein, RB1. Our proteomic experiments, however, revealed that MmuPV1 E7 still interacts specifically with RB1. We show that MmuPV1 E7 interacts through its C-terminus with the C-terminal domain of RB1. Binding of MmuPV1 E7 to RB1 did not cause significant activation of E2F-regulated cellular genes. MmuPV1 E7 expression was shown to be essential for papilloma formation. Experimental infection of mice with MmuPV1 virus expressing an E7 mutant that is defective for binding to RB1 caused delayed onset, lower incidence, and smaller sizes of papillomas. Our results demonstrate that the MmuPV1 E7 gene is essential and that targeting non-canonical activities of RB1, which are independent of RB1's ability to modulate the expression of E2F-regulated genes, contribute to papillomavirus-mediated pathogenesis.


2004 ◽  
Vol 15 (11) ◽  
pp. 5158-5171 ◽  
Author(s):  
Pieta K. Mattila ◽  
Omar Quintero-Monzon ◽  
Jamie Kugler ◽  
James B. Moseley ◽  
Steven C. Almo ◽  
...  

Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (Kd 0.02 μM) compared with ATP-G-actin (Kd 1.9 μM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer addition specifically to barbed ends of filaments, in contrast to profilin, which blocks monomer addition to pointed ends of filaments. The actin-binding domain of CAP is more extensive than previously suggested and includes a recently solved β-sheet structure in the C-terminus of CAP and adjacent sequences. Using site-directed mutagenesis, we define evolutionarily conserved residues that mediate binding to ADP-G-actin and demonstrate that these activities are required for CAP function in vivo in directing actin organization and polarized cell growth. Together, our data suggest that in vivo CAP competes with cofilin for binding ADP-actin monomers, allows rapid nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin to take the handoff of ATP-actin and facilitate barbed end assembly.


2002 ◽  
Vol 22 (21) ◽  
pp. 7501-7511 ◽  
Author(s):  
Xiaorong Liu ◽  
Carla B. Green

ABSTRACT Although CLOCK/BMAL1 heterodimers have been implicated in transcriptional regulation of several rhythmic genes in vitro through E-box sequence elements, little is known about how the circadian clock regulates rhythmic genes with diverse phases in vivo. The gene nocturnin is rhythmically transcribed in Xenopus retinal photoreceptor cells, which contain endogenous circadian clocks. Transcription of nocturnin peaks in these cells in the middle of the night, while CLOCK/BMAL1 activity peaks during the early morning. We have identified a novel protein-binding motif within the nocturnin promoter, which we designated the nocturnin element (NE). Although the NE sequence closely resembles an E-box, our data show that it functions as a cyclic AMP response element (CRE) by binding CREB. Furthermore, phosphorylated CREB (P-CREB) levels are rhythmic in Xenopus photoreceptors, with a phase similar to that of nocturnin transcription. Our results suggest that P-CREB controls the rhythmic regulation of nocturnin transcription and perhaps that of other night phase genes. The NE may be an evolutionary intermediate between the E-box and CRE sequences, both of which seem to be involved in the circadian control of transcription, but have evolved to drive transcription with different phases in these clock-containing cells.


1987 ◽  
Author(s):  
N Haigwood ◽  
E-P Pâques ◽  
G Mullenbach ◽  
G Moore ◽  
L DesJardin ◽  
...  

The clinical relevance of tissue-plasminogen-activator (t-PA) as a potent thrombolytic agent has recently been established. It has however been recognized that t-PA does not fulfill all conditions required for an ideal thrombolytic pharmaceutical agent; for example, its physiological stability and its short half life in vivo necessitate the use of very large clinical doses. We have therefore attempted to develop novel mutant t-PA proteins with improved properties by creating mutants by site-directed mutagenesis in M13 bacteriophage. Seventeen mutants were designed, cloned, and expressed in CHO cells. Modifications were of three types: alterations to glycosylation sites, truncations of the N- or C-termini, and amino acids changes at the cleavage site utilized to generate the two chain form of t-PA. The mutant proteins were analyzed in vitro for specific activity, fibrin dependence of the plasminogen activation, fibrin affinity, and susceptibility to inhibition by PAI.In brief, the results are: 1) some unglycosylated and partially glycosylated molecules obtained by mutagenesis are characterized by several-fold higher specific activity than wild type t-PA; 2) truncation at the C-terminus by three amino acids yields a molecule with increased fibrin specificity; 3) mutations at the cleavage site lead zo a decreased inhibition by PAI; and 4) recombinants of these genes have been constructed and the proteins were shown to possess multiple improved properties. The use of site directed mutagenesis has proved to be a powerful instrument to modulate the biological properties of t-PA.


2006 ◽  
Vol 26 (12) ◽  
pp. 4448-4461 ◽  
Author(s):  
Monica Agromayor ◽  
Elzbieta Wloga ◽  
Benedetta Naglieri ◽  
John Abrashkin ◽  
Kapil Verma ◽  
...  

ABSTRACT Although many E2F target genes have been identified recently, very little is known about how any single E2F site controls the expression of an E2F target gene in vivo. To test the requirement for a single E2F site in vivo and to learn how E2F-mediated repression is regulated during development and tumorigenesis, we have constructed a novel series of wild-type and mutant Rb promoter-LacZ transgenic reporter lines that allow us to visualize the activity of a crucial E2F target in vivo, the retinoblastoma tumor suppressor gene (Rb). Two mutant Rb promoter-LacZ constructs were used to evaluate the importance of a single E2F site or a nearby activator (Sp1/Ets) site that is found mutated in low-penetrance retinoblastomas. The activity of the wild-type Rb promoter is dynamic, varying spatially and temporally within the developing nervous system. While loss of the activator site silences the Rb promoter, loss of the E2F site stimulates its activity in the neocortex, retina, and trigeminal ganglion. Surprisingly, E2F-mediated repression of Rb does not act globally or in a static manner but, instead, is a highly dynamic process in vivo. Using neocortical extracts, we detected GA-binding protein α (GABPα, an Ets family member) bound to the activator site and both E2F1 and E2F4 bound to the repressor site of the Rb promoter in vitro. Additionally, we detected binding of both E2F1 and E2F4 to the Rb promoter in vivo using chromatin immunoprecipitation analysis on embryonic day 13.5 brain. Unexpectedly, we detect no evidence for Rb promoter autoregulation in neuroendocrine tumors from Rb +/−; RbP-LacZ mice that undergo loss of heterozygosity at the Rb locus, in contrast to the situation in human retinoblastomas where high RB mRNA levels are found. In summary, this study provides the first demonstration that loss of an E2F site is critical for target gene repression in vivo and underscores the complexity of the Rb and E2F family network in vivo.


2006 ◽  
Vol 87 (12) ◽  
pp. 3667-3677 ◽  
Author(s):  
Jie Lu ◽  
Jiamin Zhang ◽  
Xiaochun Wang ◽  
Hong Jiang ◽  
Chuanfeng Liu ◽  
...  

Ectropis obliqua picorna-like virus (EoPV) is a newly described insect virus that is classified as a putative member of the genus Iflavirus. The virus possesses a large, positive-sense RNA genome encoding a single polyprotein that shares physicochemical properties with those of members of the family Picornaviridae. The 5′ untranslated region (5′ UTR) plays an important role in picornavirus translation initiation, as it contains an internal ribosome entry site (IRES) that mediates cap-independent translation. To investigate translation in EoPV, an extensive range of mutations were engineered within the 5′ UTR and the effects of these changes were examined in vitro and in vivo by using a bicistronic construct. Results showed that deletions within the first 63 nt had little impact on IRES activity, whilst core IRES function was contained within stem–loops C and D, as their removal abrogated IRES activity significantly. In contrast to these findings, removal of stem–loop G containing two cryptic AUGs caused a remarkable increase in IRES activity, which was further investigated by site-directed mutagenesis at these two positions. It was also confirmed that initiation of protein synthesis occurs at AUG6 (position 391–394) and not at the AUG immediately downstream of the polypyrimidine tract. Mutation of the polypyrimidine tract (CCTTTC) had a slight effect on EoPV IRES activity. Furthermore, mutations of the RAAA motif led to a decrease in IRES activity of approximately 40 % in vitro, but these results were not supported by in vivo experiments. In conclusion, this study reveals that the EoPV IRES element is unique, although it has features in common with the type II IRESs.


Sign in / Sign up

Export Citation Format

Share Document