scholarly journals Role for a P-type H+-ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi

2005 ◽  
Vol 392 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Mauricio Vieira ◽  
Peter Rohloff ◽  
Shuhong Luo ◽  
Narcisa L. Cunha-E-Silva ◽  
Wanderley De Souza ◽  
...  

Previous studies in Trypanosoma cruzi, the etiologic agent of Chagas disease, have resulted in the cloning and sequencing of a pair of tandemly linked genes (TcHA1 and TcHA2) that encode P (phospho-intermediate form)-type H+-ATPases with homology to fungal and plant proton-pumping ATPases. In the present study, we demonstrate that these pumps are present in the plasma membrane and intracellular compartments of three different stages of T. cruzi. The main intracellular compartment containing these ATPases in epimastigotes was identified as the reservosome. This identification was achieved by immunofluorescence assays and immunoelectron microscopy showing their co-localization with cruzipain, and by subcellular fractionation and detection of their activity. ATP-dependent proton transport by isolated reservosomes was sensitive to vanadate and insensitive to bafilomycin A1, which is in agreement with the localization of P-type H+-ATPases in these organelles. Analysis by confocal immunofluorescence microscopy revealed that epitope–tagged TcHA1-Ty1 and TcHA2-Ty1 gene products are localized in the reservosomes, whereas the TcHA1-Ty1 gene product is additionally present in the plasma membrane. Immunogold electron microscopy showed the presence of the H+-ATPases in other compartments of the endocytic pathway such as the cytostome and endosomal vesicles, suggesting that in contrast with most cells investigated until now, the endocytic pathway of T. cruzi is acidified by a P-type H+-ATPase.

1995 ◽  
Vol 306 (1) ◽  
pp. 299-303 ◽  
Author(s):  
G Benaim ◽  
S N J Moreno ◽  
G Hutchinson ◽  
V Cervino ◽  
T Hermoso ◽  
...  

Despite previous reports [McLaughlin (1985) Mol. Biochem. Parasitol. 15, 189-201; Ghosh, Ray, Sarkar and Bhaduri (1990) J. Biol. Chem. 265, 11345-11351; Mazumder, Mukherjee, Ghosh, Ray and Bhaduri (1992) J. Biol. Chem. 267, 18440-18446] suggesting that the plasma-membrane Ca(2+)-ATPases of different trypanosomatids differ from the Ca2+ pumps present in mammalian cells, Trypanosoma cruzi plasma-membrane Ca(2+)-ATPase shares several characteristics with the Ca2+ pumps present in other systems. This enzyme could be partially purified from epimastigote plasma-membrane vesicles using calmodulin-agarose affinity chromatography. The activity of the partially purified enzyme was stimulated by T. cruzi or bovine brain calmodulin. In addition, the enzyme cross-reacted with antiserum and monoclonal antibody 5F10 raised against human red-blood-cell Ca(2+)-ATPase, has a molecular mass of 140 kDa and forms Ca(2+)-dependent hydroxylamine-sensitive phosphorylated intermediates. These results, together with its high sensitivity to vanadate, indicate that this enzyme belongs to the P-type class of ionic pumps.


2000 ◽  
Vol 11 (10) ◽  
pp. 3289-3298 ◽  
Author(s):  
Wolfram Antonin ◽  
Claudia Holroyd ◽  
Ritva Tikkanen ◽  
Stefan Höning ◽  
Reinhard Jahn

Endobrevin/VAMP-8 is an R-SNARE localized to endosomes, but it is unknown in which intracellular fusion step it operates. Using subcellular fractionation and quantitative immunogold electron microscopy, we found that endobrevin/VAMP-8 is present on all membranes known to communicate with early endosomes, including the plasma membrane, clathrin-coated pits, late endosomes, and membranes of thetrans-Golgi network. Affinity-purified antibodies that block the ability of endobrevin/VAMP-8 to form SNARE core complexes potently inhibit homotypic fusion of both early and late endosomes in vitro. Fab fragments were as active as intact immunoglobulin Gs. Recombinant endobrevin/VAMP-8 inhibited both fusion reactions with similar potency. We conclude that endobrevin/VAMP-8 operates as an R-SNARE in the homotypic fusion of early and late endosomes.


2007 ◽  
Vol 18 (2) ◽  
pp. 487-500 ◽  
Author(s):  
Ke Liu ◽  
Zhaolin Hua ◽  
Joshua A. Nepute ◽  
Todd R. Graham

Drs2p family P-type ATPases (P4-ATPases) are required in multiple vesicle-mediated protein transport steps and are proposed to be phospholipid translocases (flippases). The P4-ATPases Drs2p and Dnf1p cycle between the exocytic and endocytic pathways, and here we define endocytosis signals required by these proteins to maintain a steady-state localization to internal organelles. Internalization of Dnf1p from the plasma membrane uses an NPFXD endocytosis signal and its recognition by Sla1p, part of an endocytic coat/adaptor complex with clathrin, Pan1p, Sla2p/End4p, and End3p. Drs2p has multiple endocytosis signals, including two NPFXDs near the C terminus and PEST-like sequences near the N terminus that may mediate ubiquitin (Ub)-dependent endocytosis. Drs2p localizes to the trans-Golgi network in wild-type cells and accumulates on the plasma membrane when both the Ub- and NPFXD-dependent endocytic mechanisms are inactivated. Surprisingly, the pan1-20 temperature-sensitive mutant is constitutively defective for Ub-dependent endocytosis but is not defective for NPFXD-dependent endocytosis at the permissive growth temperature. To sustain viability of pan1-20, Drs2p must be endocytosed through the NPFXD/Sla1p pathway. Thus, Drs2p is an essential endocytic cargo in cells compromised for Ub-dependent endocytosis. These results demonstrate an essential role for endocytosis in retrieving proteins back to the Golgi, and they define critical cargos of the NPFXD/Sla1p system.


2002 ◽  
Vol 120 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Rosa Martinez ◽  
Youhong Wang ◽  
Gustavo Benaim ◽  
Marlene Benchimol ◽  
Wanderley de Souza ◽  
...  

2018 ◽  
Vol 293 (44) ◽  
pp. 17095-17106 ◽  
Author(s):  
Thao T. Nguyen ◽  
Grzegorz Sabat ◽  
Michael R. Sussman

In higher plants, a P-type proton-pumping ATPase generates the proton-motive force essential for the function of all other transporters and for proper growth and development. X-ray crystallographic studies of the plant plasma membrane proton pump have provided information on amino acids involved in ATP catalysis but provided no information on the structure of the C-terminal regulatory domain. Despite progress in elucidating enzymes involved in the signaling pathways that activate or inhibit this pump, the site of interaction of the C-terminal regulatory domain with the catalytic domains remains a mystery. Genetic studies have pointed to amino acids in various parts of the protein that may be involved, but direct chemical evidence for which ones are specifically interacting with the C terminus is lacking. In this study, we used in vivo cross-linking experiments with a photoreactive unnatural amino acid, p-benzoylphenylalanine, and tandem MS to obtain direct evidence that the C-terminal regulatory domain interacts with amino acids located within the N-terminal actuator domain. Our observations are consistent with a mechanism in which intermolecular, rather than intramolecular, interactions are involved. Our model invokes a “head-to-tail” organization of ATPase monomers in which the C-terminal domain of one ATPase molecule interacts with the actuator domain of another ATPase molecule. This model serves to explain why cross-linked peptides are found only in dimers and trimers, and it is consistent with prior studies suggesting that within the membrane the protein can be organized as homopolymers, including dimers, trimers, and hexamers.


1997 ◽  
Vol 110 (5) ◽  
pp. 673-679 ◽  
Author(s):  
P. Zlatkine ◽  
B. Mehul ◽  
A.I. Magee

Several members of the Src family of protein tyrosine kinases have a N-terminal dual acylation motif which specifies their myristoylation and S-acylation. These lipid modifications are necessary for correct intracellular localisation to the plasma membrane and to detergent-resistant glycolipid-enriched membrane domains (GEMs). Using chimaeras of the Lck dual acylation motif with two normally cytosolic proteins (chloramphenicol acetyl transferase and galectin-3), we show here that this motif is sufficient to encode correct lipid modification and to target these chimaeras to the plasma membrane, as demonstrated by subcellular fractionation and confocal immunofluorescence microscopy of transiently transfected COS cells. In addition, the chimaeras are resistant to extraction with cold non-ionic detergent, indicating targeting to GEM subdomains in the plasma membrane. The dual acylation motif has potential for targeting proteins to specific plasma membrane subdomains involved in signalling.


2001 ◽  
Vol 21 (10) ◽  
pp. 3564-3575 ◽  
Author(s):  
Guangli Wang ◽  
J. Michael McCaffery ◽  
Beverly Wendland ◽  
Sophie Dupré ◽  
Rosine Haguenauer-Tsapis ◽  
...  

ABSTRACT The Saccharomyces cerevisiae RSP5 gene encodes an essential HECT E3 ubiquitin-protein ligase. Rsp5p contains an N-terminal C2 domain, three WW domains in the central portion of the molecule, and a C-terminal catalytic HECT domain. A diverse group of substrates of Rsp5p and vertebrate C2 WW-domain-containing HECT E3s have been identified, including both nuclear and membrane-associated proteins. We determined the intracellular localization of Rsp5p and the determinants necessary for localization, in order to better understand how Rsp5p activities are coordinated. Using both green fluorescent protein fusions to Rsp5p and immunogold electron microscopy, we found that Rsp5p was distributed in a punctate pattern at the plasma membrane, corresponding to membrane invaginations that are likely sites of endosome formation, as well as at perivacuolar sites. The latter appeared to correspond to endocytic intermediates, as these structures were not seen in a sla2/end4-1 mutant, and double-immunogold labeling demonstrated colocalization of Rsp5p with the endosomal markers Pep12p and Vps32p. The C2 domain was an important determinant of localization; however, mutations that disrupted HECT domain function also caused mislocalization of Rsp5p, indicating that enzymatic activity is linked to localization. Deletion of the C2 domain partially stabilized Fur4p, a protein previously shown to undergo Rsp5p- and ubiquitin-mediated endocytosis; however, Fur4p was still ubiquitinated at the plasma membrane when the C2 domain was deleted from the protein. Together, these results indicate that Rsp5p is located at multiple sites within the endocytic pathway and suggest that Rsp5p may function at multiple steps in the ubiquitin-mediated endocytosis pathway.


1995 ◽  
Vol 42 (4) ◽  
pp. 481-496 ◽  
Author(s):  
B C Monk ◽  
A B Mason ◽  
T B Kardos ◽  
D S Perlin

The need for new mechanistic classes of broad spectrum antifungal agents has prompted development of the membrane sector and ectodomain of the plasma membrane proton pumping ATPase as an antifungal target. The fungal proton pump is a highly abundant, essential enzyme in Saccharomyces cerevisiae. It belongs to the family of P-type ATPases, a class of enzymes that includes the Na+,K(+)-ATPase and the gastric H+,K(+)-ATPase. These enzymes are cell surface therapeutic targets for the cardiac glycosides and several anti-ulcer drugs, respectively. The effects of acid-activated omeprazole show that extensive inhibition of the S. cerevisiae ATPase is fungicidal. Fungal proton pumps possess elements within their transmembrane loops that distinguish them from other P-type ATPases. These loops, such as the conformationally sensitive transmembrane loop 1+2, can attenuate the activity of the enzyme. Expression in S. cerevisiae of fully functional chimeric ATPases that contain a foreign target comprising transmembrane loops 1+2 and/or 3+4 from the fungal pathogen Candida albicans suggests that these loops operate as a domain. The chimera containing C. albicans transmembrane loops 1+2 and 3+4 provides a prototype for mutational analysis of the target region and the screening of inhibitors directed against opportunistic fungal pathogens. Panels of mutants with modified ATPase regulation or with altered cell surface cysteine residues are also described. Information about the ATPase membrane sector and ectodomain has been integrated into a model of this region.


2000 ◽  
Vol 203 (1) ◽  
pp. 155-160 ◽  
Author(s):  
A. Ambesi ◽  
M. Miranda ◽  
V.V. Petrov ◽  
C.W. Slayman

One of the most abundant proteins in the yeast plasma membrane is the P-type H(+)-ATPase that pumps protons out of the cell, supplying the driving force for a wide array of H(+)-dependent cotransporters. The ATPase is a 100 kDa polypeptide, anchored in the lipid bilayer by 10 transmembrane alpha-helices. It is structurally and functionally related to the P-type Na(+),K(+)-, H(+),K(+)- and Ca(2+)-ATPases of animal cells and the H(+)-ATPases of plant cells, and it shares with them a characteristic reaction mechanism in which ATP is split to ADP and inorganic phosphate (P(i)) via a covalent beta-aspartyl phosphate intermediate. Cryoelectron microscopic images of the H(+)-ATPase of Neurospora crassa and the sarcoplasmic reticulum Ca(2+)-ATPase of animal cells have recently been obtained at 8 nm resolution. The membrane-embedded portion of the molecule, which presumably houses the cation translocation pathway, is seen to be connected via a narrow stalk to a large, multidomained cytoplasmic portion, known to contain the ATP-binding and phosphorylation sites. In parallel with the structural studies, efforts are being made to dissect structure/function relationships in several P-type ATPases by means of site-directed mutagenesis. This paper reviews three phenotypically distinct classes of mutant that have resulted from work on the yeast PMA1 H(+)-ATPase: (1) mutant ATPases that are poorly folded and retained in the endoplasmic reticulum; (2) mutants in which the conformational equilibrium has been shifted from the E(2) state, characterized by high affinity for vanadate, to the E(1) state, characterized by high affinity for ATP; and (3) mutants with altered coupling between ATP hydrolysis and proton pumping. Although much remains to be learned before the transport mechanism can be fully understood, these mutants serve to identify critical parts of the polypeptide that are required for protein folding, conformational change and H(+):ATP coupling.


1995 ◽  
Vol 130 (4) ◽  
pp. 821-834 ◽  
Author(s):  
A W van Weert ◽  
K W Dunn ◽  
H J Gueze ◽  
F R Maxfield ◽  
W Stoorvogel

Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'-diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D-labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.


Sign in / Sign up

Export Citation Format

Share Document