scholarly journals Evolutionary tinkering: birth of a novel chloroplast protein

2007 ◽  
Vol 403 (3) ◽  
pp. e13-e14 ◽  
Author(s):  
Tatjana Kleine ◽  
Dario Leister

The term ‘evolutionary tinkering’ refers to evolutionary innovation by recombination of functional units, and includes the creation of novel proteins from pre-existing modules. A novel instance of evolutionary tinkering was recently discovered in the flowering plant genus Nicotiana: the conversion of a nuclear transcription factor into the plastid-resident protein WIN4 (wound-induced clone 4) involved in environmental stress responses. In this issue of the Biochemical Journal, Kodama and Sano now show that two steps are necessary for the establishment of the novel plastid protein: the acquisition of an internal translation initiation site and the use of multiple transcription starts to produce short mRNA variants that encode the plastid-targeted protein form.

1998 ◽  
Vol 180 (7) ◽  
pp. 1822-1830 ◽  
Author(s):  
Rafael Maldonado ◽  
Alan J. Herr

ABSTRACT Ribosomes translating bacteriophage T4 gene 60 mRNA bypass 50 noncoding nucleotides from a takeoff site at codon 46 to a landing site just upstream of codon 47. A key signal for efficient bypassing is contained within the nascent peptide synthesized prior to takeoff. Here we show that this signal is insensitive to the addition of coding information at its N terminus. In addition, analysis of amino-terminal fusions, which allow detection of all major products synthesized from the gene 60 mRNA, show that 50% of ribosomes bypass the coding gap while the rest either terminate at a UAG stop codon immediately following codon 46 or fail to resume coding. Bypassing efficiency estimates significantly lower than 50% were obtained with enzymatic reporter systems that relied on comparing test constructs to constructs with a precise excision of the gap (gap deletion). Further analysis showed that these estimates are distorted by differences between test and gap deletion functional mRNA levels. An internal translation initiation site at Met12 of gene 60(which eliminates part of the essential nascent peptide) also distorts these estimates. Together, these results support an efficiency estimate of ∼50%, less than previously reported. This estimate suggests that bypassing efficiency is determined by the competition between reading signals and release factors and gives new insight into the kinetics of bypassing signal action.


1998 ◽  
Vol 12 (5) ◽  
pp. 654-663 ◽  
Author(s):  
Tianshu Gao ◽  
Michael J. McPhaul

Abstract The androgen receptor (AR) is present in many cells in two forms. The B form migrates with an apparent mass of 110 kDa and constitutes more than 80% of the immunoreactive receptor in most cell types. The A form of the AR migrates with an apparent mass of 87 kDa, appears to derive from internal translation initiation at methionine-188 in the AR open-reading frame, and usually constitutes 20% or less of the immunoreactive AR present. Previous experiments designed to examine the functional capacity of the A and B forms of the AR have been hampered by marked differences in the expression levels of the two isoforms, as the nucleotide sequence surrounding the codon encoding methionine-188 causes it to be used inefficiently as a translation initiation site. To circumvent this, we altered the nucleotide sequence surrounding methionine-188 to render it more similar to that surrounding the codon encoding methionine-1. Transfection of a cDNA containing these changes resulted in similar levels of expression of A and B forms of the AR as assessed by immunoblot assays using antibodies directed at an epitope preserved in both. Functional activities of these cDNAs were assessed using cotransfection assays that employed two model androgen-responsive genes (MMTV-luciferase and PRE2-tk-luciferase) in response to mibolerone, a potent androgen agonist, in three different cell lines. These studies demonstrated subtle differences in the activities of the A and B isoforms, which depended on the promoter and cell context. Additional studies failed to reveal any major differences in the responses of the AR-A and AR-B isoforms to a variety of androgen agonists and antagonists, suggesting that the previously reported functional defect of the AR-A is due principally to its level of expression. When assays of AR function are performed under conditions in which levels of expression of the two isoforms are equivalent, the AR-A and AR-B possess similar functional activities.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kieu Thi Xuan Vo ◽  
Md Mizanor Rahman ◽  
Md Mustafizur Rahman ◽  
Kieu Thi Thuy Trinh ◽  
Sun Tae Kim ◽  
...  

AbstractBiotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.


1997 ◽  
Vol 136 (5) ◽  
pp. 508-515 ◽  
Author(s):  
Simone A R van de Graaf ◽  
Erwin Pauws ◽  
Jan J M de Vijlder ◽  
Carrie Ris-Stalpers

Abstract We developed a transient transfection system for human thyroglobulin (TG) cDNA in both human thyroid cells and in COS-1 cells. Four overlapping TG cDNA fragments were amplified by reverse transcription-PCR from RNA of normal thyroid tissue. The most 5′ fragment includes the natural translation initiation site and the sequence encoding the signal peptide (SP). After subcloning, the nucleotide sequence was determined and compared with the published human sequence, resulting in the detection of 30 nucleotide variations. For validation purposes, all variations were screened in 6–12 normal human alleles. Twenty-one were present in all screened alleles and have to be revised in the published nucleotide sequence. Since one variation concerns a triplet insertion, the coding sequence of the mature human thyroglobulin is 8307 nucleotides encoding 2750 amino acids. The TG cDNA constructs were transiently transfected in HTori 3 and COS-1 cells and protein expression was detected using a polyclonal anti-human-TG on fixed cells and after SDS-PAGE. In both cell-lines all four TG protein fragments were expressed. The mannose structures detected on the proteins by lectins and localization after expression in the cells suggest that only the N-terminal TG fragment (containing the SP) is directed to the endoplasmatic reticulum but is unable to reach the Golgi complex. The described expression system in human thyrocytes will be a helpful tool in studying the structure–function relationship of human TG in thyroid hormonogenesis. European Journal of Endocrinology 136 508–515


2006 ◽  
Vol 128 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Rocio K. Finol-Urdaneta ◽  
Nina Strüver ◽  
Heinrich Terlau

Ion channels are membrane-spanning proteins that allow ions to permeate at high rates. The kinetic characteristics of the channels present in a cell determine the cell signaling profile and therefore cell function in many different physiological processes. We found that Kv1.7 channels from mouse heart muscle have two putative translation initiation start sites that generate two channel isoforms with different functional characteristics, mKv1.7L (489 aa) and a shorter mKv1.7S (457 aa). The electrophysiological analysis of mKv1.7L and mKv1.7S channels revealed that the two channel isoforms have different inactivation kinetics. The channel resulting from the longer protein (L) inactivates faster than the shorter channels (S). Our data supports the hypothesis that mKv1.7L channels inactivate predominantly due to an N-type related mechanism, which is impaired in the mKv1.7S form. Furthermore, only the longer version mKv1.7L is regulated by the cell redox state, whereas the shorter form mKv1.7S is not. Thus, expression starting at each translation initiation site results in significant functional divergence. Our data suggest that the redox modulation of mKv1.7L may occur through a site in the cytoplasmic N-terminal domain that seems to encompass a metal coordination motif resembling those found in many redox-sensitive proteins. The mRNA expression profile and redox modulation of mKv1.7 kinetics identify these channels as molecular entities of potential importance in cellular redox-stress states such as hypoxia.


Sign in / Sign up

Export Citation Format

Share Document