scholarly journals Lipid phosphate phosphatases form homo- and hetero-oligomers: catalytic competency, subcellular distribution and function

2008 ◽  
Vol 411 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Jaclyn S. Long ◽  
Nigel J. Pyne ◽  
Susan Pyne

Lipid phosphate phosphatases (LPP1–LPP3) have been topographically modelled as monomers (molecular mass of 31–36 kDa) composed of six transmembrane domains and with the catalytic site facing the extracellular side of the plasma membrane or the luminal side of intracellular membranes. The catalytic motif has three conserved domains, termed C1, C2 and C3. The C1 domain may be involved in substrate recognition, whereas C2 and C3 domains appear to participate in the catalytic dephosphorylation of the substrate. We have obtained three lines of evidence to demonstrate that LPPs exist as functional oligomers. First, we have used recombinant expression and immunoprecipitation analysis to demonstrate that LPP1, LPP2 and LPP3 form both homo- and hetero-oligomers. Secondly, large LPP oligomeric complexes that are catalytically active were isolated using gel-exclusion chromatography. Thirdly, we demonstrate that catalytically deficient guinea-pig FLAG-tagged H223L LPP1 mutant can form an oligomer with wild-type LPP1 and that wild-type LPP1 activity is preserved in the oligomer. These findings suggest that, in an oligomeric arrangement, the catalytic site of the wild-type LPP can function independently of the catalytic site of the mutant LPP. Finally, we demonstrate that endogenous LPP2 and LPP3 form homo- and hetero-oligomers, which differ in their subcellular localization and which may confer differing spatial regulation of phosphatidic acid and sphingosine 1-phosphate signalling.

2001 ◽  
Vol 29 (6) ◽  
pp. 825-830 ◽  
Author(s):  
C. Pilquil ◽  
Z.-C. Ling ◽  
I. Singh ◽  
K. Buri ◽  
Q.-X. Zhang ◽  
...  

The serum-derived lipid growth factors, lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P), activate cells selectively through different members of a family of endothelial differentiation gene (EDG) receptors. Activation of EDG receptors by LPA and S1P provides a variety of signalling cascades depending upon the G-protein coupling of the different EDG receptors. This leads to chemotactic and mitogenic responses, which are important in wound healing. For example, LPA stimulates fibroblast division and S1P stimulates the chemotaxis and division of endothelial cells leading to angiogenesis. Counteracting these effects of LPA and S1P, are the actions of lipid phosphate phosphatases (LPP, or phosphatidate phosphohydrolases, Type 2). The isoform LPP-1 is expressed in the plasma membrane with its active site outside the cell. This enzyme is responsible for ‘ecto-phosphatase’ activity leading to the degradation of exogenous lipid phosphate mediators, particularly LPA. Expression of LPP-1 decreases cell activation by exogenous LPA. The mechanism for this is controversial and several mechanisms have been proposed. Evidence will be presented that the LPPs cross-talk with EDG and other growth factor receptors, thus, regulating the responses of the cells to lipid phosphate mediators of signal transduction.


2005 ◽  
Vol 33 (6) ◽  
pp. 1370-1374 ◽  
Author(s):  
S. Pyne ◽  
J.S. Long ◽  
N.T. Ktistakis ◽  
N.J. Pyne

Mammalian LPPs (lipid phosphate phosphatases) are integral membrane proteins that belong to a superfamily of lipid phosphatases/phosphotransferases. They have broad substrate specificity in vitro, dephosphorylating PA (phosphatidic acid), S1P (sphingosine 1-phosphate), LPA (lysophosphatidic acid) etc. Their physiological role may include the attenuation of S1P- and LPA-stimulated signalling by virtue of an ecto-activity (i.e. dephosphorylation of extracellular S1P and LPA), thereby limiting the activation of LPA- and S1P-specific G-protein-coupled receptors at the cell surface. However, our recent work suggests that an intracellular action of LPP2 and LPP3 may account for the reduced agonist-stimulated p42/p44 mitogen-activated protein kinase activation of HEK-293 (human embryonic kidney 293) cells. This may involve a reduction in the basal levels of PA and S1P respectively and the presence of an early apoptotic phenotype under conditions of stress (serum deprivation). Additionally, we describe a model whereby LPP2, but not LPP3, may be functionally linked to the phospholipase D1-derived PA-dependent recruitment of sphingosine kinase 1 to the perinuclear compartment. We also consider the potential regulatory mechanisms for LPPs, which may involve oligomerization. Lastly, we highlight many aspects of the LPP biology that remain to be fully defined.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1263 ◽  
Author(s):  
Xiaoyun Tang ◽  
David N. Brindley

Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.


2005 ◽  
Vol 391 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Jaclyn Long ◽  
Peter Darroch ◽  
Kah Fei Wan ◽  
Kok Choi Kong ◽  
Nicholas Ktistakis ◽  
...  

We have shown previously that LPPs (lipid phosphate phosphatases) reduce the stimulation of the p42/p44 MAPK (p42/p44 mitogen-activated protein kinase) pathway by the GPCR (G-protein-coupled receptor) agonists S1P (sphingosine 1-phosphate) and LPA (lysophosphatidic acid) in serum-deprived HEK-293 cells [Alderton, Darroch, Sambi, McKie, Ahmed, N. J. Pyne and S. Pyne (2001) J. Biol. Chem. 276, 13452–13460]. In the present study, we now show that this can be blocked by pretreating HEK-293 cells with the caspase 3/7 inhibitor, Ac-DEVD-CHO [N-acetyl-Asp-Glu-Val-Asp-CHO (aldehyde)]. Therefore LPP2 and LPP3 appear to regulate the apoptotic status of serum-deprived HEK-293 cells. This was supported further by: (i) caspase 3/7-catalysed cleavage of PARP [poly(ADP-ribose) polymerase] was increased in serum-deprived LPP2-overexpressing compared with vector-transfected HEK-293 cells; and (ii) serum-deprived LPP2- and LPP3-overexpressing cells exhibited limited intranucleosomal DNA laddering, which was absent in vector-transfected cells. Moreover, LPP2 reduced basal intracellular phosphatidic acid levels, whereas LPP3 decreased intracellular S1P in serum-deprived HEK-293 cells. LPP2 and LPP3 are constitutively co-localized with SK1 (sphingosine kinase 1) in cytoplasmic vesicles in HEK-293 cells. Moreover, LPP2 but not LPP3 prevents SK1 from being recruited to a perinuclear compartment upon induction of PLD1 (phospholipase D1) in CHO (Chinese-hamster ovary) cells. Taken together, these data are consistent with an important role for LPP2 and LPP3 in regulating an intracellular pool of PA and S1P respectively, that may govern the apoptotic status of the cell upon serum deprivation.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 893-906 ◽  
Author(s):  
Elizabeth Gustavson ◽  
Andrew S Goldsborough ◽  
Zehra Ali ◽  
Thomas B Kornberg

Abstract We isolated and characterized numerous engrailed and invected alleles. Among the deficiencies we isolated, a mutant lacking invected sequences was viable and phenotypically normal, a mutant lacking engrailed was an embryo lethal and had slight segmentation defects, and a mutant lacking both engrailed and invected was most severely affected. In seven engrailed alleles, mutations caused translation to terminate prematurely in the central or C-terminal portion of the coding sequence, resulting in embryonic lethality and segmentation defects. Both engrailed and invected expression declined prematurely in these mutant embryos. In wild-type embryos, engrailed and invected are juxtaposed and are expressed in essentially identical patterns. A breakpoint mutant that separates the mgrailed and invected transcription units parceled different aspects of the expression pattern to engrailed or invected. We also found that both genes cause similar defects when expressed ectopically and that the protein products of both genes act to repress transcription in cultured cells. We propose that the varied phenotypes of the engrailed alleles can be explained by the differential effects these mutants have on the combination of engrailed and invected activities, that engrailed and invected share a regulatory region, and that they encode redundant functions.


Sign in / Sign up

Export Citation Format

Share Document