scholarly journals The NALCN Channel Regulator UNC-80 Functions in a Subset of Interneurons To Regulate Caenorhabditis elegans Reversal Behavior

2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.

2019 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

AbstractNALCN (Na+ leak channel, non-selective), UNC80 and UNC79 form a non-selective, voltage-independent cation channel complex that affects a broad array of neuronal activities. The molecular and neuronal mechanisms underlying the functions of the NALCN complex remain unclear. In a screen for Caenorhabditis elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated novel loss-of-function (lf) mutations in unc-80 and unc-79. unc-80 and unc-79 lf mutants exhibited defective MeSa avoidance but wild type-like responses to other odorants. Lf mutants of C. elegans nca/NALCN exhibited similar MeSa-specific avoidance defect, while lf mutants of the NALCN regulatory gene nlf-1 avoided MeSa like wild type. Using fluorescent transgenic animals, we identified a subset of unc-80-expressing neurons. Neuron-specific transgene rescue and knockdown experiments suggest that a subset of interneurons, primarily including AVA, AVE and AVG, might play a necessary and sufficient role in mediating unc-80 regulation of the MeSa avoidance. We found that unc-79 was expressed in neurons largely overlapping those expressing unc-80, which is supported by the rescue of unc-80(lf) defects using an unc-80 transgene driven by an unc-79 promoter. We also suggest that C. elegans locomotion responds more sensitively to the changes of expression levels of NALCN-related genes than the MeSa avoidance does. Together, our results identified NALCN-related genes as key regulators of the MeSa avoidance behavior and provided novel genetic and neuronal insights into the function of the NALCN channel complex.Author summaryNALCN (Na+ leak channel, non-selective) is a non-selective, voltage-independent cation channel that affects multiple neuronal activities and behaviors. Mutations in NALCN and its regulator UNC80 can cause serious neurological diseases. The regulation and function of the NALCN channel complex remain to be understood. From a genetic screen, we surprisingly found that the nematode Caenorhabditis elegans requires NALCN and its two regulators UNC-80 and UNC-79 to escape from the plant stress hormone methyl salicylate (MeSa). Using methods including transgenic neuronal labeling, rescues and knockdowns, we found that unc-80-expression in a subset of head interneurons, including AVA, AVE and AVG, might be necessary and sufficient to elicit the MeSa avoidance response. We also found that unc-79 functions in overlapping neurons as unc-80 to regulate C. elegans behaviors. Our findings provide novel molecular and neuronal mechanisms for understanding the regulation and function of the NALCN channel complex.


Genetics ◽  
1986 ◽  
Vol 113 (4) ◽  
pp. 853-867
Author(s):  
Eun-Chung Park ◽  
H Robert Horvitz

ABSTRACT Certain mutations in the unc-105 II gene of the nematode Caenorhabditis elegans have dominant effects on morphology and behavior: animals become small, severely hypercontracted and paralyzed. These unc-105 mutants revert both spontaneously and with mutagens at high frequencies to a wild-type phenotype. Most of the reversion events are intragenic, apparently because the null (loss-of-function) phenotype of unc-105 is wild type. One revertant defined an extragenic suppressor locus, sup-20 X. Such suppressor alleles of sup-20 are rare, and the apparent null phenotype of sup-20 is embryonic lethality. By constructing animals genetically mosaic for sup-20, we have shown that the primary effect of sup-20 is in muscle cells. In addition to mutations in sup-20, other mutations causing muscle defects, such as unc-54 and unc-22 mutations, suppress the hypercontracted phenotype of unc-105. The ease of identifying nonhypercontracted revertants of unc-105 mutants greatly facilitates the isolation of new mutants defective in muscle structure and function.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Bruno van Swinderen ◽  
Laura B Metz ◽  
Laynie D Shebester ◽  
Jane E Mendel ◽  
Paul W Sternberg ◽  
...  

Abstract To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the α-subunit of Go, have EC50s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goα, and presynaptic Goα-effectors are candidate VA molecular targets.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Rikako Hirata ◽  
Kei-ichiro Mishiba ◽  
Nozomu Koizumi ◽  
Yuji Iwata

Abstract Objective microRNA (miRNA) is a small non-coding RNA that regulates gene expression by sequence-dependent binding to protein-coding mRNA in eukaryotic cells. In plants, miRNA plays important roles in a plethora of physiological processes, including abiotic and biotic stress responses. The present study was conducted to investigate whether miRNA-mediated regulation is important for the endoplasmic reticulum (ER) stress response in Arabidopsis. Results We found that hyl1 mutant plants are more sensitive to tunicamycin, an inhibitor of N-linked glycosylation that causes ER stress than wild-type plants. Other miRNA-related mutants, se and ago1, exhibited similar sensitivity to the wild-type, indicating that the hypersensitive phenotype is attributable to the loss-of-function of HYL1, rather than deficiency in general miRNA biogenesis and function. However, the transcriptional response of select ER stress-responsive genes in hyl1 mutant plants was indistinguishable from that of wild-type plants, suggesting that the loss-of-function of HYL1 does not affect the ER stress signaling pathways.


2001 ◽  
Vol 91 (3) ◽  
pp. 1245-1250 ◽  
Author(s):  
Xiang Q. Gu ◽  
Gabriel G. Haddad

To study the physiological effects of chronic intermittent hypoxia on neuronal excitability and function in mice, we exposed animals to cyclic hypoxia for 8 h daily (12 cycles/h) for ∼4 wk, starting at 2–3 days of age, and examined the properties of freshly dissociated hippocampal neurons in vitro. Compared with control (Con) hippocampal CA1 neurons, exposed (Cyc) neurons showed action potentials (AP) with a smaller amplitude and a longer duration and a more depolarized resting membrane potential. They also have a lower rate of spontaneous firing of AP and a higher rheobase. Furthermore, there was downregulation of the Na+ current density in Cyc compared with Con neurons (356.09 ± 54.03 pA/pF in Cyc neurons vs. 508.48 ± 67.30 pA/pF in Con, P < 0.04). Na+ channel characteristics, including activation, steady-state inactivation, and recovery from inactivation, were similar in both groups. The deactivation rate, however, was much larger in Cyc than in Con (at −100 mV, time constant for deactivation = 0.37 ± 0.04 ms in Cyc neurons and 0.18 ± 0.01 ms in Con neurons). We conclude that the decreased neuronal excitability in mice neurons treated with cyclic hypoxia is due, at least in part, to differences in passive properties (e.g., resting membrane potential) and in Na+ channel expression and/or regulation. We hypothesize that this decreased excitability is an adaptive response that attempts to decrease the energy expenditure that is used for adjusting disturbances in ionic homeostasis in low-O2conditions.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2013 ◽  
Author(s):  
Julia Wang ◽  
Alexandra K. Jennings ◽  
Jennifer R. Kowalski

The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation inCaenorhabditis elegansby testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48andye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in theemb-27 APC6mutants suggests that the APC inhibits AWA-mediated chemosensation inC. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however,mat-2 APC1mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human andC. elegansnervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease.


2019 ◽  
Author(s):  
Lars Benner ◽  
Katherine Prothro ◽  
Katherine McJunkin

AbstractThe germline sex determination pathway in C. elegans determines whether germ cells develop as oocytes or sperm, with no previously known effect on viability. The mir-35 family of microRNAs are expressed in the C. elegans germline and embryo and are essential for both viability and normal hermaphroditic sex determination, preventing aberrant male gene expression in XX hermaphrodite embryos. Here we show that combining feminizing mutations with partial loss of function of the mir-35 family results in enhanced penetrance embryonic lethality that preferentially kills XO animals. This lethal phenotype is due to altered signaling through the germline sex determination pathway, and maternal germline feminization is sufficient to induce enhanced lethality. These findings reveal a surprising pleiotropy of sperm-fate promoting pathways on organismal viability. Overall, our results demonstrate an unexpectedly strong link between sex determination and embryonic viability, and suggest that in wild type animals, mir-35 family members buffer against misregulation of pathways outside the sex determination program, allowing for clean sex reversal rather than deleterious effects of perturbing sex determination genes.


2007 ◽  
Vol 97 (2) ◽  
pp. 1833-1838 ◽  
Author(s):  
Xiang Q. Gu ◽  
Amjad Kanaan ◽  
Hang Yao ◽  
Gabriel G. Haddad

To examine the effect of chronically elevated CO2 on excitability and function of neurons, we exposed mice to 8 and 12% CO2 for 4 wk (starting at 2 days of age), and examined the properties of freshly dissociated hippocampal neurons obtained from slices. Chronic CO2-treated neurons (CC) had a similar input resistance ( Rm) and resting membrane potential ( Vm) as control (CON). Although treatment with 8% CO2 did not change the rheobase (64 ± 11 pA, n = 9 vs. 47 ± 12 pA, n = 8 for CC 8% vs. CON; means ± SE), 12% CO2 treatment increased it significantly (73 ± 8 pA, n = 9, P = 0.05). Furthermore, the 12% CO2 but not the 8% CO2 treatment decreased the Na+ channel current density (244 ± 36 pA/pF, n = 17, vs. 436 ± 56 pA/pF, n = 18, for CC vs. CON, P = 0.005). Recovery from inactivation was also lowered by 12% but not 8% CO2. Other gating properties of Na+ current, such as voltage-conductance curve, steady-state inactivation, and time constant for deactivation, were not modified by either treatment. Western blot analysis showed that the expression of Na+ channel types I–III was not changed by 8% CO2 treatment, but their expression was significantly decreased by 20–30% ( P = 0.03) by the 12% treatment. We conclude from these data and others that neuronal excitability and Na+ channel expression depend on the duration and level of CO2 exposure and maturational changes occur in early life regarding neuronal responsiveness to CO2.


Genetics ◽  
2020 ◽  
Vol 214 (4) ◽  
pp. 977-990 ◽  
Author(s):  
Yassi Hafezi ◽  
Samantha R. Sruba ◽  
Steven R. Tarrash ◽  
Mariana F. Wolfner ◽  
Andrew G. Clark

Gene-poor, repeat-rich regions of the genome are poorly understood and have been understudied due to technical challenges and the misconception that they are degenerating “junk.” Yet multiple lines of evidence indicate these regions may be an important source of variation that could drive adaptation and species divergence, particularly through regulation of fertility. The ∼40 Mb Y chromosome of Drosophila melanogaster contains only 16 known protein-coding genes, and is highly repetitive and entirely heterochromatic. Most of the genes originated from duplication of autosomal genes and have reduced nonsynonymous substitution rates, suggesting functional constraint. We devised a genetic strategy for recovering and retaining stocks with sterile Y-linked mutations and combined it with CRISPR to create mutants with deletions that disrupt three Y-linked genes. Two genes, PRY and FDY, had no previously identified functions. We found that PRY mutant males are subfertile, but FDY mutant males had no detectable fertility defects. FDY, the newest known gene on the Y chromosome, may have fertility effects that are conditional or too subtle to detect. The third gene, CCY, had been predicted but never formally shown to be required for male fertility. CRISPR targeting and RNA interference of CCY caused male sterility. Surprisingly, however, our CCY mutants were sterile even in the presence of an extra wild-type Y chromosome, suggesting that perturbation of the Y chromosome can lead to dominant sterility. Our approach provides an important step toward understanding the complex functions of the Y chromosome and parsing which functions are accomplished by genes vs. repeat elements.


Sign in / Sign up

Export Citation Format

Share Document