scholarly journals Development of antibody fragments for immunotherapy of prion diseases

2009 ◽  
Vol 418 (3) ◽  
pp. 507-515 ◽  
Author(s):  
Vincenza Campana ◽  
Lorena Zentilin ◽  
Ilaria Mirabile ◽  
Agata Kranjc ◽  
Philippe Casanova ◽  
...  

Prions are infectious proteins responsible for a group of fatal neurodegenerative diseases called TSEs (transmissible spongiform encephalopathies) or prion diseases. In mammals, prions reproduce themselves by recruiting the normal cellular protein PrPC and inducing its conversion into the disease-causing isoform denominated PrPSc. Recently, anti-prion antibodies have been shown to permanently cure prion-infected cells. However, the inability of full-length antibodies and proteins to cross the BBB (blood-brain barrier) hampers their use in the therapy of TSEs in vivo. Alternatively, brain delivery of prion-specific scFv (single-chain variable fragment) by AAV (adeno-associated virus) transfer delays the onset of the disease in infected mice, although protection is not complete. We investigated the anti-prion effects of a recombinant anti-PrP (D18) scFv by direct addition to scrapie-infected cell cultures or by infection with both lentivirus and AAV-transducing vectors. We show that recombinant anti-PrP scFv is able to reduce proteinase K-resistant PrP content in infected cells. In addition, we demonstrate that lentiviruses are more efficient than AAV in gene transfer of the anti-PrP scFv gene and in reducing PrPSc content in infected neuronal cell lines. Finally, we have used a bioinformatic approach to construct a structural model of the D18scFv–PrPC complex. Interestingly, according to the docking results, ArgPrP151 (Arg151 from prion protein) is the key residue for the interactions with D18scFv, anchoring the PrPC to the cavity of the antibody. Taken together, these results indicate that combined passive and active immunotherapy targeting PrP might be promising strategies for therapeutic intervention in prion diseases.

mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Christina D. Orrú ◽  
Jason M. Wilham ◽  
Lynne D. Raymond ◽  
Franziska Kuhn ◽  
Björn Schroeder ◽  
...  

ABSTRACT A key challenge in managing transmissible spongiform encephalopathies (TSEs) or prion diseases in medicine, agriculture, and wildlife biology is the development of practical tests for prions that are at or below infectious levels. Of particular interest are tests capable of detecting prions in blood components such as plasma, but blood typically has extremely low prion concentrations and contains inhibitors of the most sensitive prion tests. One of the latter tests is quaking-induced conversion (QuIC), which can be as sensitive as in vivo bioassays, but much more rapid, higher throughput, and less expensive. Now we have integrated antibody 15B3-based immunoprecipitation with QuIC reactions to increase sensitivity and isolate prions from inhibitors such as those in plasma samples. Coupling of immunoprecipitation and an improved real-time QuIC reaction dramatically enhanced detection of variant Creutzfeldt-Jakob disease (vCJD) brain tissue diluted into human plasma. Dilutions of 1014-fold, containing ~2 attogram (ag) per ml of proteinase K-resistant prion protein, were readily detected, indicating ~10,000-fold greater sensitivity for vCJD brain than has previously been reported. We also discriminated between plasma and serum samples from scrapie-infected and uninfected hamsters, even in early preclinical stages. This combined assay, which we call “enhanced QuIC” (eQuIC), markedly improves prospects for routine detection of low levels of prions in tissues, fluids, or environmental samples. IMPORTANCE Transmissible spongiform encephalopathies (TSEs) are largely untreatable and are difficult to diagnose definitively prior to irreversible clinical decline or death. The transmissibility of TSEs within and between species highlights the need for practical tests for even the smallest amounts of infectivity. A few sufficiently sensitive in vitro methods have been reported, but most have major limitations that would preclude their use in routine diagnostic or screening applications. Our new assay improves the outlook for such critical applications. We focused initially on blood plasma because a practical blood test for prions would be especially valuable for TSE diagnostics and risk reduction. Variant Creutzfeldt-Jakob disease (vCJD) in particular has been transmitted between humans via blood transfusions. Enhanced real-time quaking-induced conversion (eRTQ) provides by far the most sensitive detection of vCJD to date. The 15B3 antibody binds prions of multiple species, suggesting that our assay may be useful for clinical and fundamental studies of a variety of TSEs of humans and animals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Alessio Cardinale ◽  
Silvia Biocca

Prion diseases or transmissible spongiform encephalopathies (TSE) are a group of neurodegenerative and infectious disorders characterized by the conversion of a normal cellular protein PrPCinto a pathological abnormally folded form, termed PrPSc. There are neither available therapies nor diagnostic tools for an early identification of individuals affected by these diseases. New gene-based antibody strategies are emerging as valuable therapeutic tools. Among these, intrabodies are chimeric molecules composed by recombinant antibody fragments fused to intracellular trafficking sequences, aimed at inhibiting,in vivo, the function of specific therapeutic targets. The advantage of intrabodies is that they can be selected against a precise epitope of target proteins, including protein-protein interaction sites and cytotoxic conformers (i.e., oligomeric and fibrillar assemblies). Herein, we address and discussin vitroandin vivoapplications of intrabodies in prion diseases, focussing on their therapeutic potential.


2021 ◽  
Vol 22 (13) ◽  
pp. 6822
Author(s):  
Óscar López-Pérez ◽  
David Sanz-Rubio ◽  
Adelaida Hernaiz ◽  
Marina Betancor ◽  
Alicia Otero ◽  
...  

Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.


2009 ◽  
Vol 83 (9) ◽  
pp. 4469-4475 ◽  
Author(s):  
Kristin L. McNally ◽  
Anne E. Ward ◽  
Suzette A. Priola

ABSTRACT The hallmark of transmissible spongiform encephalopathies (TSEs or prion diseases) is the accumulation of an abnormally folded, partially protease-resistant form (PrP-res) of the normal protease-sensitive prion protein (PrP-sen). PrP-sen is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. In vitro, the anchor and the local membrane environment are important for the conversion of PrP-sen to PrP-res. In vivo, however, the anchor is not necessary because transgenic mice expressing anchorless PrP-sen accumulate PrP-res and replicate infectivity. To clarify the role of the GPI anchor in TSE infection, cells expressing GPI-anchored PrP-sen, anchorless PrP-sen, or both forms of PrP-sen were exposed to the mouse scrapie strain 22L. Cells expressing anchored PrP-sen produced PrP-res after exposure to 22L. Surprisingly, while cells expressing anchorless PrP-sen made anchorless PrP-res in the first 96 h postinfection, no PrP-res was detected at later passes. In contrast, when cells expressing both forms of PrP-sen were exposed to 22L, both anchored and anchorless PrP-res were detected over multiple passes. Consistent with the in vitro data, scrapie-infected cells expressing anchored PrP-sen transmitted disease to mice whereas cells expressing anchorless PrP-sen alone did not. These results demonstrate that the GPI anchor on PrP-sen is important for the persistent infection of cells in vitro. Our data suggest that cells expressing anchorless PrP-sen are not directly infected with scrapie. Thus, PrP-res formation in transgenic mice expressing anchorless PrP-sen may be occurring extracellularly.


2016 ◽  
Vol 213 (6) ◽  
pp. 1047-1059 ◽  
Author(s):  
Caihong Zhu ◽  
Uli S. Herrmann ◽  
Jeppe Falsig ◽  
Irina Abakumova ◽  
Mario Nuvolone ◽  
...  

Microglial activation is a hallmark of most neurodegenerative disorders, and is particularly conspicuous in prion diseases. However, the role of microglia, which function as both primary immune effector cells and professional phagocytes in the central nervous system, remains contentious in the context of neurodegeneration. Here, we evaluated the effect of microglial depletion/deficiency on prion pathogenesis. We found that ganciclovir-mediated microglial ablation on tga20/CD11b-thymidine kinase of Herpes simplex virus (HSVTK) cerebellar organotypic cultured slices markedly aggravated prion-induced neurotoxicity. A similar deterioration of disease was recapitulated in in vivo microglial depletion in prion-infected tga20/CD11b-HSVTK mice. Additionally, deficiency of microglia in interleukin 34 knockout (IL34−/−) mice again resulted in significantly augmented proteinase K–resistant prion protein deposition and accelerated prion disease progression. These results provide unambiguous evidence for a general protective role of microglia in prion pathogenesis.


2002 ◽  
Vol 76 (12) ◽  
pp. 6323-6331 ◽  
Author(s):  
Maxim Y. Balakirev ◽  
Michel Jaquinod ◽  
Arthur L. Haas ◽  
Jadwiga Chroboczek

ABSTRACT The invasion strategy of many viruses involves the synthesis of viral gene products that mimic the functions of the cellular proteins and thus interfere with the key cellular processes. Here we show that adenovirus infection is accompanied by an increased ubiquitin-cleaving (deubiquitinating) activity in the host cells. Affinity chromatography on ubiquitin aldehyde (Ubal), which was designed to identify the deubiquitinating proteases, revealed the presence of adenovirus L3 23K proteinase (Avp) in the eluate from adenovirus-infected cells. This proteinase is known to be necessary for the processing of viral precursor proteins during virion maturation. We show here that in vivo Avp deubiquitinates a number of cellular proteins. Analysis of the substrate specificity of Avp in vitro demonstrated that the protein deubiquitination by this enzyme could be as efficient as proteolytic processing of viral proteins. The structural model of the Ubal-Avp interaction revealed some similarity between S1-S4 substrate binding sites of Avp and ubiquitin hydrolases. These results may reflect the acquisition of an advantageous property by adenovirus and may indicate the importance of ubiquitin pathways in viral infection.


2015 ◽  
Vol 87 (2 suppl) ◽  
pp. 1421-1434 ◽  
Author(s):  
CLAUDIA P. FIGUEIREDO ◽  
NATALIA C. FERREIRA ◽  
GISELLE F. PASSOS ◽  
ROBSON DA COSTA ◽  
FERNANDA S. NEVES ◽  
...  

An altered form of the cellular prion protein, the PrPScor PrPRes, is implicated in the occurrence of the still untreatable transmissible spongiform encephalopathies. We have previously synthesized and characterized aromatic compounds that inhibit protease-resistant prion protein (PrPRes) accumulation in scrapie-infected cells. These compounds belong to different chemical classes, including acylhydrazones, chalcones and oxadiazoles. Some of the active compounds were non-toxic to neuroblastoma cells in culture and seem to possess drugable properties, since they are in agreement with the Lipinski´s rule of 5 and present desirable pharmacokinetic profiles as predicted in silico. Before the evaluation of the in vivo efficacy of the aromatic compounds in scrapie-infected mice, safety assessment in healthy mice is needed. Here we used Swiss mice to evaluate the acute toxicity profile of the six most promising anti-prionic compounds, the 2,4,5-trimethoxychalcones (J1, J8, J20 and J35) and the 1,3,4-oxadiazoles (Y13 and Y17). One single oral administration (300 mg/kg) of J1, J8, J20, J35, Y13 and Y17 or repeated intraperitoneal administration (10 mg/kg, 3 times a week, for 4 weeks) of J1, J8 and J35, did not elicit toxicity in mice. We strongly believe that the investigated trimethoxychalcones and oxadiazoles are interesting compounds to be further analyzed in vivo against prion diseases.


2011 ◽  
Vol 392 (5) ◽  
Author(s):  
Jan Stöhr ◽  
Kerstin Elfrink ◽  
Nicole Weinmann ◽  
Holger Wille ◽  
Dieter Willbold ◽  
...  

AbstractThe conversion of the cellular isoform of the prion protein (PrPC) into the pathologic isoform (PrPSc) is the key event in prion diseases. To study the conversion process, anin vitrosystem based on varying the concentration of low amounts of sodium dodecyl sulfate (SDS) has been employed. In the present study, the conversion of full-length PrPCisolated from Chinese hamster ovary cells (CHO-PrPC) was examined. CHO-PrPCharbors native, posttranslational modifications, including the GPI anchor and two N-linked glyco-sylation sites. The properties of CHO-PrPCwere compared with those of full-length and N-terminally truncated recombinant PrP. As shown earlier with recombinant PrP (recPrP90-231), transition from a soluble α-helical state as known for native PrPCinto an aggregated, β-sheet-rich PrPSc-like state could be induced by dilution of SDS. The aggregated state is partially proteinase K (PK)-resistant, exhibiting a cleavage site similar to that found with PrPSc. Compared to recPrP (90-231), fibril formation with CHO-PrPCrequires lower SDS concentrations (0.0075%), and can be drastically accelerated by seeding with PrPScpurified from brain homogenates of terminally sick hamsters. Our results show that recPrP 90-231 and CHO-PrPC behave qualitatively similar but quantitatively different. Thein vivosituation can be simulated closer with CHO-PrPCbecause the specific PK cleave site could be shown and the seed-assisted fibrillization was much more efficient.


2018 ◽  
Vol 17 (9) ◽  
pp. 671-679 ◽  
Author(s):  
Kin Yen Chia ◽  
Khuen Yen Ng ◽  
Rhun Yian Koh ◽  
Soi Moi Chye

Background & Objective: Protein misfolding and aggregation have been considered the common pathological hallmarks for a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). These abnormal proteins aggregates damage mitochondria and induce oxidative stress, resulting in neuronal cell death. Prolonged neuronal damage activates microglia and astrocytes, development of inflammation reaction and further promotes neurodegeneration. Thus, elimination of abnormal protein aggregates without eliciting any adverse effects are the main treatment strategies. To overcome this, recent studies have deployed single- chain fragment variable antibodies (scFvs) to target the pathological protein aggregates, such as amyloid-beta (Aβ) peptides, α-synuclein (α-syn) and Huntingtin (Htt). To date scFv has been effective at inhibiting abnormal protein aggregates formation in both in vitro and in vivo model system of AD, PD and HD. Conclusion: Currently active research is still ongoing to improve the scFv gene delivery technology, to further enhance brain penetration, intracellular stability, solubility and efficacy of scFv intrabody.


Sign in / Sign up

Export Citation Format

Share Document