scholarly journals Proteolytic processing of the serine protease matriptase-2: identification of the cleavage sites required for its autocatalytic release from the cell surface

2010 ◽  
Vol 430 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Marit Stirnberg ◽  
Eva Maurer ◽  
Angelika Horstmeyer ◽  
Sonja Kolp ◽  
Stefan Frank ◽  
...  

Matriptase-2 is a member of the TTSPs (type II transmembrane serine proteases), an emerging class of cell surface proteases involved in tissue homoeostasis and several human disorders. Matriptase-2 exhibits a domain organization similar to other TTSPs, with a cytoplasmic N-terminus, a transmembrane domain and an extracellular C-terminus containing the non-catalytic stem region and the protease domain. To gain further insight into the biochemical functions of matriptase-2, we characterized the subcellular localization of the monomeric and multimeric form and identified cell surface shedding as a defining point in its proteolytic processing. Using HEK (human embryonic kidney)-293 cells, stably transfected with cDNA encoding human matriptase-2, we demonstrate a cell membrane localization for the inactive single-chain zymogen. Membrane-associated matriptase-2 is highly N-glycosylated and occurs in monomeric, as well as multimeric, forms covalently linked by disulfide bonds. Furthermore, matriptase-2 undergoes shedding into the conditioned medium as an activated two-chain form containing the catalytic domain, which is cleaved at the canonical activation motif, but is linked to a released portion of the stem region via a conserved disulfide bond. Cleavage sites were identified by MS, sequencing and mutational analysis. Interestingly, cell surface shedding and activation of a matriptase-2 variant bearing a mutation at the active-site serine residue is dependent on the catalytic activity of co-expressed or co-incubated wild-type matriptase-2, indicating a transactivation and trans-shedding mechanism.

1995 ◽  
Vol 182 (2) ◽  
pp. 549-557 ◽  
Author(s):  
G I Migaki ◽  
J Kahn ◽  
T K Kishimoto

L-selectin expression is regulated in part by membrane-proximal cleavage from the cell surface of leukocytes and L-selectin-transfected cells. The downregulation of L-selectin from the surface of neutrophils is speculated to be a process involved in the adhesion cascade leading to neutrophil recruitment to sites of inflammation. We previously reported that L-selectin is cleaved between Lys321 and Ser322 in a region that links the second short consensus repeat (SCR) and the transmembrane domain. We demonstrate that replacing this cleavage domain of L-selectin with the corresponding region of E-selectin prevents L-selectin shedding, as judged by inhibiting the generation of the 68-kD soluble and 6-kD transmembrane cleavage products of L-selectin. Unexpectedly, we found that point mutations of the cleavage site, as well as mutations of multiple conserved amino acids within the cleavage domain, do not significantly affect L-selectin shedding. However, short deletions of four or five amino acids in the L-selectin cleavage domain inhibit L-selectin downregulation. Mutations that appeared to inhibit L-selectin shedding resulted in higher levels of cell surface expression, consistent with a lack of apparent proteolysis from the cell membrane. One deletion mutant, I327 delta N332, retains the native cleavage site yet inhibits L-selectin proteolysis as well. Restoring the amino acids deleted between I327 and N332 with five alanine residues restores L-selectin proteolysis. Thus, the proteolytic processing of L-selectin appears to have a relaxed sequence specificity at the cleavage site, and it may depend on the physical length or other secondary structural characteristics of the cleavage domain.


2012 ◽  
Vol 393 (9) ◽  
pp. 971-977 ◽  
Author(s):  
Maryta Sztukowska ◽  
Florian Veillard ◽  
Barbara Potempa ◽  
Matthew Bogyo ◽  
Jan J. Enghild ◽  
...  

Abstract RgpA and Kgp gingipains are non-covalent complexes of endoprotease catalytic and hemagglutinin-adhesin domains on the surface of Porphyromonas gingivalis. A motif conserved in each domain has been suggested to function as an oligomerization motif. We tested this hypothesis by mutating motif residues to hexahistidine or insertion of hexahistidine tag to disrupt the motif within the Kgp catalytic domain. All modifications led to the secretion of entire Kgp activity into the growth media, predominantly in a form without functional His-tag. This confirmed the role of the conserved motif in correct posttranslational proteolytic processing and assembly of the multidomain complexes.


2010 ◽  
Vol 428 (3) ◽  
pp. 325-346 ◽  
Author(s):  
Toni M. Antalis ◽  
Marguerite S. Buzza ◽  
Kathryn M. Hodge ◽  
John D. Hooper ◽  
Sarah Netzel-Arnett

The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.


1994 ◽  
Vol 127 (6) ◽  
pp. 1843-1857 ◽  
Author(s):  
K C Hart ◽  
Y F Xu ◽  
A N Meyer ◽  
B A Lee ◽  
D J Donoghue

The location of autocrine interactions between the v-sis protein and PDGF receptors remains uncertain and controversial. To examine whether receptor-ligand interactions can occur intracellularly, we have constructed fusion proteins that anchor v-sis to specific intracellular membranes. Fusion of a cis-Golgi retention signal from a coronavirus E1 glycoprotein to v-sis protein completely abolished its transforming ability when transfected into NIH3T3 cells. Fusion proteins incorporating mutations in this retention signal were not retained within the Golgi complex but instead were transported to the cell surface, resulting in efficient transformation. All chimeric proteins were shown to dimerize properly. Derivatives of some of these constructs were also constructed bearing the cytoplasmic tail from the glycoprotein of vesicular stomatitis virus (VSV-G). These constructs allowed examination of subcellular localization by double-label immunofluorescence, using antibodies that distinguish between the extracellular PDGF-related domain and the VSV-G cytoplasmic tail. Colocalization of sis-E1-G with Golgi markers confirmed its targeting to the early Golgi complex. The sis-E1 constructs, targeted to the early Golgi complex, exhibited no proteolytic processing whereas the mutant forms of sis-E1 exhibited normal proteolytic processing. Treatment with suramin, a polyanionic compound that disrupts ligand/receptor interactions at the cell surface, was able to revert the transformed phenotype induced by the mutant sis-E1 constructs described here. Our results demonstrate that autocrine interactions between the v-sis oncoprotein and PDGF receptors within the early Golgi complex do not result in functional signal transduction. Another v-sis fusion protein was constructed by attaching the transmembrane domain and COOH-terminus of TGN38, a protein that localizes to the trans-Golgi network (TGN). This construct was primarily retained intracellularly, although some of the fusion protein reached the surface. Deletion of the COOH-terminal region of the TGN38 retention signal abrogated the TGN-localization, as evidenced by very prominent cell surface localization, and resulted in increased transforming activity. The behavior of the sis-TGN38 derivatives is discussed within the context of the properties of TGN38 itself, which is known to recycle from the cell surface to the TGN.


2020 ◽  
Vol 295 (36) ◽  
pp. 12686-12696 ◽  
Author(s):  
Ce Zhang ◽  
Yikai Zhang ◽  
Shengnan Zhang ◽  
Zhiting Wang ◽  
Shijin Sun ◽  
...  

Type II transmembrane serine proteases (TTSPs) are a group of enzymes participating in diverse biological processes. Some members of the TTSP family are implicated in viral infection. TMPRSS11A is a TTSP expressed on the surface of airway epithelial cells, which has been shown to cleave and activate spike proteins of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronaviruses (CoVs). In this study, we examined the mechanism underlying the activation cleavage of TMPRSS11A that converts the one-chain zymogen to a two-chain enzyme. By expression in human embryonic kidney 293, esophageal EC9706, and lung epithelial A549 and 16HBE cells, Western blotting, and site-directed mutagenesis, we found that the activation cleavage of human TMPRSS11A was mediated by autocatalysis. Moreover, we found that TMPRSS11A activation cleavage occurred before the protein reached the cell surface, as indicated by studies with trypsin digestion to remove cell surface proteins, treatment with cell organelle-disturbing agents to block intracellular protein trafficking, and analysis of a soluble form of TMPRSS11A without the transmembrane domain. We also showed that TMPRSS11A was able to cleave the SARS-CoV-2 spike protein. These results reveal an intracellular autocleavage mechanism in TMPRSS11A zymogen activation, which differs from the extracellular zymogen activation reported in other TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2637 ◽  
Author(s):  
Zdeněk Perutka ◽  
Marek Šebela

Trypsin is the protease of choice for protein sample digestion in proteomics. The most typical active forms are the single-chain β-trypsin and the two-chain α-trypsin, which is produced by a limited autolysis of β-trypsin. An additional intra-chain split leads to pseudotrypsin (ψ-trypsin) with three chains interconnected by disulfide bonds, which can be isolated from the autolyzate by ion-exchange chromatography. Based on experimental data with artificial substrates, peptides, and protein standards, ψ-trypsin shows altered kinetic properties, thermodynamic stability and cleavage site preference (and partly also cleavage specificity) compared to the above-mentioned proteoforms. In our laboratory, we have analyzed the performance of bovine ψ-trypsin in the digestion of protein samples with a different complexity. It cleaves predominantly at the characteristic trypsin cleavage sites. However, in a comparison with common tryptic digestion, non-specific cleavages occur more frequently (mostly after the aromatic residues of Tyr and Phe) and more missed cleavages are generated. Because of the preferential cleavages after the basic residues and more developed side specificity, which is not expected to occur for the major trypsin forms (but may appear anyway because of their autolysis), ψ-trypsin produces valuable information, which is complementary in part to data based on a strictly specific trypsin digestion and thus can be unnoticed following common proteomics protocols.


2013 ◽  
Vol 454 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Jana Rudolf ◽  
Marie A. Pringle ◽  
Neil J. Bulleid

QSOX1 (quiescin sulfhydryl oxidase 1) efficiently catalyses the insertion of disulfide bonds into a wide range of proteins. The enzyme is mechanistically well characterized, but its subcellular location and the identity of its protein substrates remain ill-defined. The function of QSOX1 is likely to involve disulfide formation in proteins entering the secretory pathway or outside the cell. In the present study, we show that this enzyme is efficiently secreted from mammalian cells despite the presence of a transmembrane domain. We identify internal cleavage sites and demonstrate that the protein is processed within the Golgi apparatus to yield soluble enzyme. As a consequence of this efficient processing, QSOX1 is probably functional outside the cell. Also, QSOX1 forms a dimer upon cleavage of the C-terminal domain. The processing of QSOX1 suggests a novel level of regulation of secretion of this potent disulfide catalyst and producer of hydrogen peroxide.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2126-2126
Author(s):  
Fabian Stavenuiter ◽  
Alexander B Meijer ◽  
Erica Sellink ◽  
Koen Mertens

Abstract Abstract 2126 Poster Board II-104 Introduction FSAP is a plasma serine protease first reported as an activator of single-chain urokinase-type plasminogen activator (scuPA) and Factor VII (FVII), suggesting a key role in hemostasis and thrombosis. Numerous additional functions have been proposed, including inhibition of smooth muscle cell proliferation and migration. Rigorous studies have been limited by the difficulty of obtaining intact FSAP from blood or recombinant sources due to autocatalytic activity which is stimulated through interaction with negatively charged surfaces. About 5-10% of healthy individuals carry a polymorphism (Marburg-1) at position c221 (G534Q) located in one of the 8 surface binding loops of the serine protease domain. This polymorphism has been proposed to be associated with impaired activation of scuPA in vitro, suggesting a putative defect in fibrinolysis. Epidemiological studies have remained inconclusive with regard to prothrombotic implications of this polymorphism. Residue c221 has been described as highly important in serine proteases. For prothrombin the D221Q mutation has been associated with a severe defect in fibrinogen clotting. Similarly, patients who are hemizygous for a c221 substitution in FIX (A221V) suffer from haemophilia B. In general, in Na+ -dependent serine proteases like FVII, FIX, and thrombin, residue c221 contributes to activity and substrate specificity. Objectives: Our aim was to investigate, using intact recombinant (r) FSAP, the effect of the M1-polymorphism on FSAP biological activity. Results Various stable cell lines (HEK293-, BHK-, LOVO-, and CHO cells) expressing normal rFSAP (wt) and its Marburg-1 (M1) variant were produced. Irrespective to the cell type used, rFSAP was found to be cleaved after expression due to autocatalytic cleavage. However, wtFSAP was found to be more sensitive to proteolytic processing than its M1-variant. Moreover, wtFSAP was found to be completely inactivated whereas the M1-variant could be purified in its two-chain form. To overcome the problem of autocatalytic degradation, for wtFSAP we constructed a FSAP-variant in which the natural activation site (R313-I314) was replaced by a cleavage site for the bacterial protease thermolysin. Thermolysin-activated rFSAP displayed the same affinity for chromogenic peptide substrates (S2288) as pdFSAP (Km 0.38 mM) and retained its capability to activate scuPA (Km 62 nM). Vmax for scuPA activation was increased through interaction with negative charged surfaces like polyphosphate and heparin (2- and 3-fold, respectively), whereas no effect on the hydrolysis of S2288 was found. In contrast, the M1-variant displayed severely reduced affinity for S2288 (6.5-fold) and hardly any scuPA activation. Interestingly, addition of heparin or polyphosphate showed positive effects on the hydrolysis of both substrates by the M1-variant. Compared to wtFSAP, however, both the Km and Vmax were still heavily affected. Surprisingly, wtFSAP proved incapable of cleaving purified FVII, even in the presence of calcium-ions and lipid vesicles of varying composition, including up to 40 mol% negative phospholipids such as phosphatidylserine and cardiolipin (CL). On membranes of 100% CL FVII cleavage did occur, but this resulted in transient activation and rapid degradation. The M1-variant, however, displayed no FVII cleavage under any of the conditions tested. Finally, we found that Na+, in absence of CaCl2, affects the maximal rate of S2288 hydrolysis by rFSAP, with a maximal effect at physiological relevant concentrations. The Na+ concentrations needed to reach maximal catalytic activity of the M1-variant were found 8 - 10 fold above physiologically relevant levels. Conclusions While rFSAP indeed activates scuPA, FVII appears surprisingly resistant to activation by rFSAP. The M1-variant does not activate FVII either, but does display reduced scuPA activation. The M1-polymorphism, being a Gly to Glu substitution at position c221, makes the protease less responsive to Na+. This is compatible with its location in the putative Na+-binding loops. Whether or not the reduced scuPA activation has any physiological impact remains unclear. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 428 (3) ◽  
pp. e3-e5 ◽  
Author(s):  
Rosemary Bass ◽  
Dylan R. Edwards

The ADAM disintegrin metalloproteinases (where ADAM is ‘a disintegrin and metalloproteinase’) are a family of transmembrane cell-surface proteins with essential roles in adhesion and proteolytic processing in all animals. The archetypal family member is ADAM17 {also known as TACE [TNFα (tumour necrosis factor α)-converting enzyme]}, which is involved in processing pro-TNFα and in the activation of ligands for the EGFR [EGF (epidermal growth factor) receptor], as well as cleavage of diverse cell-surface receptors and adhesion molecules. ADAM-mediated shedding is itself influenced via cell signalling pathways. In this issue of the Biochemical Journal, Willems et al. make the observation that phorbol ester activates shedding by ADAM17 by affecting the activity of PDI (protein disulfide isomerase). They propose that PDI maintains ADAM17 in an inactive ‘closed’ state and PMA stimulation generates ROS (reactive oxygen species) and thus an altered redox environment, which in turn inactivates PDI and allows ADAM17 to adopt an ‘open’ active conformation. This activation is accompanied by changes in disulfide bonds in the ADAM17 ectodomain. This is a novel and exciting finding that could help to unlock the actions of ADAM sheddases, as well as a host of other mechanisms that rely upon rapid alterations in protein conformation on the cell surface.


1999 ◽  
Vol 73 (9) ◽  
pp. 7907-7911 ◽  
Author(s):  
Klaus-Ingmar Pfrepper ◽  
Martin Löchelt ◽  
Hans-Richard Rackwitz ◽  
Martina Schnölzer ◽  
Hans Heid ◽  
...  

ABSTRACT Spumaviruses, or foamy viruses, express Gag proteins that are incompletely processed by the viral protease in cell cultures. To delineate the proteolytic cleavage sites between potential Gag subdomains, recombinant human spumaretrovirus (HSRV) Gag proteins of different lengths were expressed, purified by affinity chromatography, and subjected to HSRV protease assays. HSRV-specific proteolytic cleavage products were isolated and characterized by Western blotting. Peptides spanning potential cleavage sites, as deduced from the sizes of the proteolytic cleavage products, were chemically synthesized and assayed with HSRV protease. The cleaved peptides were then subjected to mass spectrometry. In control experiments, HSRV protease-deficient mutant proteins were used to rule out unspecific processing by nonviral proteases. The cleavage site junctions identified and the calculated sizes of the cleavage products were in agreement with those of the authentic cleavage products of the HSRV Gag proteins detectable in viral proteins from purified HSRV particles and in virus-infected cells. The biological significance of the data was confirmed by mutational analysis of the cleavage sites in a recombinant Gag protein and in the context of the infectious HSRV DNA provirus.


Sign in / Sign up

Export Citation Format

Share Document