scholarly journals Picking sides: distinct roles for CYP76M6 and CYP76M8 in rice oryzalexin biosynthesis

2013 ◽  
Vol 454 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Yisheng Wu ◽  
Qiang Wang ◽  
Matthew L. Hillwig ◽  
Reuben J. Peters

Natural products biosynthesis often requires the action of multiple CYPs (cytochromes P450), whose ability to introduce oxygen, increasing solubility, is critical for imparting biological activity. In previous investigations of rice diterpenoid biosynthesis, we characterized CYPs that catalyse alternative hydroxylation of ent-sandaracopimaradiene, the precursor to the rice oryzalexin antibiotic phytoalexins. In particular, CYP76M5, CYP76M6 and CYP76M8 were all shown to carry out C-7β hydroxylation, whereas CYP701A8 catalyses C-3α hydroxylation, with oxy groups found at both positions in oryzalexins A–D, suggesting that these may act consecutively in oryzalexin biosynthesis. In the present paper, we report that, although CYP701A8 only poorly reacts with 7β-hydroxy-ent-sandaracopimaradiene, CYP76M6 and CYP76M8 readily react with 3α-hydroxy-ent-sandaracopimaradiene. Notably, their activity yields distinct products, resulting from hydroxylation at C-9β by CYP76M6 or C-7β by CYP76M8, on different sides of the core tricyclic ring structure. Thus CYP76M6 and CYP76M8 have distinct non-redundant roles in orzyalexin biosynthesis. Moreover, the resulting 3α,7β- and 3α,9β-diols correspond to oryzalexins D and E respectively. Accordingly, the results of the present study complete the functional identification of the biosynthetic pathway underlying the production of these bioactive phytoalexins. In addition, the altered regiochemistry catalysed by CYP76M6 following C-3α hydroxylation has some implications for its active-site configuration, offering further molecular insight.

Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 509-519 ◽  
Author(s):  
Takeshi Tokai ◽  
Makoto Fujimura ◽  
Hirokazu Inoue ◽  
Takayuki Aoki ◽  
Kunihiro Ohta ◽  
...  

The cereal pathogen Fusarium graminearum species complex (e.g. Fusarium asiaticum, previously referred to as F. graminearum lineage 6) produces the mycotoxin trichothecene in infected grains. The fungus has a gene for self-defence, Tri101, which is responsible for 3-O-acetylation of the trichothecene skeleton in the biosynthetic pathway. Recently, trichothecene non-producers Fusarium oxysporum and Fusarium fujikuroi (teleomorph Gibberella fujikuroi) were shown to have both functional (Tri201) and non-functional (pseudo-Tri101) trichothecene 3-O-acetyltransferase genes in their genome. To gain insight into the evolution of the trichothecene genes in Gibberella species, the authors examined whether or not other (pseudo-)biosynthesis-related genes are found near Tri201. However, sequence analysis of a 12 kb region containing Tri201 did not result in identification of additional trichothecene (pseudo-)genes in F. oxysporum. In a further attempt to find other trichothecene (pseudo-)genes from the non-producer, the authors examined whether or not the non-trichothecene genes flanking the ends of the core trichothecene gene cluster (i.e. the Tri5 cluster) comprise a region of synteny in Gibberella species. However, it was not possible to isolate trichothecene (pseudo-)genes from F. oxysporum (in addition to the previously identified pseudo-Tri101), because synteny was not observed for this region in F. asiaticum and F. oxysporum. In contrast to this unsuccessful identification of additional trichothecene (pseudo-)genes in the non-producer, a functional trichothecene 3-O-acetyltransferase gene could be identified in fusaria other than Gibberella: Fusarium decemcellulare and Fusarium solani; and in an ascomycete from a different fungal genus, Magnaporthe grisea. Together with the recent functional identification of Saccharomyces cerevisiae ScAYT1, these results are suggestive of a different evolutionary origin for the trichothecene 3-O-acetyltransferase gene from other biosynthesis pathway genes. The phylogeny of the 3-O-acetyltransferase was mostly concordant with the rDNA species phylogeny of these ascomycetous fungi.


1988 ◽  
Vol 53 (11) ◽  
pp. 2574-2582 ◽  
Author(s):  
Hedvig Medzihradszky-Schweiger ◽  
Helga Süli-Vargha ◽  
József Bódi ◽  
Kálmán Medzihradszky

A number of N-nitroso-2-chloroethyl-carbamoyl (Q(NO)) derivatives of α-melanotropin fragments have been synthesized and their effect on the frog skin melanocytes studied. Peptides substituted in this way possess the biological activity of the parent compounds, indicating that they preserved their receptor recognizing ability. These compounds can therefore serve as affinity labels. Some of these derivatives, related to the C-terminal sequence of α-melanotropin show prolonged darkening reaction, which does not influence the subsequent reaction of melanocytes with α-melanotropin. The Q(NO)-derivative of a fragment derived from the classical active site of the hormone shows, however, inhibition of the effect of α-melanotropin. It can be concluded that the latter peptide acts through the melanotropin receptor, while others, related to the C-terminal sequence of the hormone through another mechanism.


2021 ◽  
Author(s):  
Jiawang Liu ◽  
Anan Liu ◽  
Youcai Hu

Cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other enzymes were utilized to catalyze varied dimerization of matured natural products so as to create the structural diversity and complexity in microorganisms.


2021 ◽  
Vol 85 (1) ◽  
pp. 42-52
Author(s):  
Taro Shiraishi ◽  
Tomohisa Kuzuyama

Abstract Phosphonates are organophosphorus compounds possessing a characteristic C−P bond in which phosphorus is directly bonded to carbon. As phosphonates mimic the phosphates and carboxylates of biological molecules to potentially inhibit metabolic enzymes, they could be lead compounds for the development of a variety of drugs. Fosfomycin (FM) is a representative phosphonate natural product that is widely used as an antibacterial drug. Here, we review the biosynthesis of FM, which includes a recent breakthrough to find a missing link in the biosynthetic pathway that had been a mystery for a quarter-century. In addition, we describe the genome mining of phosphonate natural products using the biosynthetic gene encoding an enzyme that catalyzes C–P bond formation. We also introduce the chemoenzymatic synthesis of phosphonate derivatives. These studies expand the repertoires of phosphonates and the related biosynthetic machinery. This review mainly covers the years 2012-2020.


2004 ◽  
Vol 39 ◽  
pp. 540-544 ◽  
Author(s):  
Barbara T. Smith ◽  
Tas D. Van Ommen ◽  
Mark A. J. Curran

AbstractMethanesulphonic acid (MSA) is an important trace-ion constituent in ice cores, with connections to biological activity and sea-ice distribution. Post-depositional movement of MSA has been documented in firn, and this study investigates movement in solid ice by measuring variations in MSA distribution across several horizontal sections from an ice core after 14.5 years storage. The core used is from below the bubble close-off depth at Dome Summit South, Law Dome, East Antarctica. MSA concentration was studied at 3 and 0.5 cm resolution across the core widths. Its distribution was uniform through the core centres, but the outer 3 cm showed gradients in concentrations down to less than half of the central value at the core edge. This effect is consistent with diffusion to the surrounding air during its 14.5 year storage. The diffusion coefficient is calculated to be 2 ×10–13 m2 s–1, and the implications for the diffusion mechanism are discussed.


mSystems ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Daniela B. B. Trivella ◽  
Rafael de Felicio

ABSTRACT Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches—genome mining, silent pathway induction, and MS-based molecular networking—compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.


Author(s):  
Sabrin R. M. Ibrahim ◽  
Shaimaa G. A. Mohamed ◽  
Ahmed E. Altyar ◽  
Gamal A. Mohamed

2013 ◽  
Vol 451 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Sarah Schlosser ◽  
David Leitsch ◽  
Michael Duchêne

Entamoeba histolytica, the causative agent of amoebiasis, possesses the dithiol-containing redox proteins Trx (thioredoxin) and TrxR (Trx reductase). Both proteins were found to be covalently modified and inactivated by metronidazole, a 5-nitroimidazole drug that is commonly used to treat infections with microaerophilic protozoan parasites in humans. Currently, very little is known about enzymes and other proteins participating in the Trx-dependent redox network of the parasite that could be indirectly affected by metronidazole treatment. On the basis of the disulfide/dithiol-exchange mechanism we constructed an active-site mutant of Trx, capable of binding interacting proteins as a stable mixed disulfide intermediate to screen the target proteome of Trx in E. histolytica. By applying Trx affinity chromatography, two-dimensional gel electrophoresis and MS, peroxiredoxin and 15 further potentially redox-regulated proteins were identified. Among them, EhSat1 (E. histolytica serine acetyltransferase-1), an enzyme involved in the L-cysteine biosynthetic pathway, was selected for detailed analysis. Binding of Trx to EhSat1 was verified by Far-Western blot analysis. Trx was able to restore the activity of the oxidatively damaged EhSat1 suggesting that the TrxR/Trx system protects sensitive proteins against oxidative stress in E. histolytica. Furthermore, the activity of peroxiredoxin, which is dependent on a functioning TrxR/Trx system, was strongly reduced in metronidazole-treated parasites.


2006 ◽  
Vol 1 (10) ◽  
pp. 1934578X0600101
Author(s):  
Alexander K. L. Yuen ◽  
Craig A. Hutton

This review covers the synthesis of various cyclic peptide natural products possessing highly functionalized tryptophan residues, focusing on the examples of diazonamide A, the TMC-95 compounds, the celogentin/moroidin family and the complestatin/chloropeptin system. Recent efforts toward the preparation of these modified-tryptophan-containing peptides will be outlined, focusing primarily on the novel methods for the assembly of the highly functionalized indole/tryptophan moieties at the core of these structures.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 2040
Author(s):  
Ricardo Vivas-Reyes ◽  
Alejando Morales-Bayuelo ◽  
Carlos Gueto ◽  
Juan C. Drosos ◽  
Johana Márquez Lázaro ◽  
...  

Background: Heat shock protein (Hsp90KDa) is a molecular chaperone involved in the process of cellular oncogenesis, hence its importance as a therapeutic target in clinical trials. Geldanamycin is an inhibitor of Hsp90 chaperone activity, which binds to the ATP binding site in the N-terminal domain of Hsp90. However, geldanamycin has shown hepatotoxic damage in clinical trials; for this reason, its use is not recommended. Taking advantage that geldanamycin binds successfully to Hsp90, many efforts have focused on the search for similar analogues, which have the same or better biological response and reduce the side effects of its predecessor; 17-AAG and 17-DMAG are examples of these analogues. Methods: In order to know the chemical factors influencing the growth or decay of the biological activity of geldanamycin analogues, different computational techniques such as docking, 3DQSAR and quantum similarity were used.  Moreover, the study quantified the interaction energy between amino acids residues of active side and geldanamycin analogues, through hybrid methodologies and density functional theory (DFT) indexes. Results: The evaluation of interaction energies showed that the interaction with Lys58 residue is essential for the union of the analogues to the active site of Hsp90, and improves its biological activity. This union is formed through a substituent on C-11 of the geldanamycin macrocycle. A small and attractor group was found as the main steric and electrostatic characteristic that substituents on C11 need in order to interact with Lys 58; behavior was observed with hydroxy and methoxy series of geldanamycin analogues, under study. Conclusion: These outcomes were supported with quantum similarity and reactivity indices calculations using DFT in order to understand the non-covalent stabilization in the active site of these compounds.


Sign in / Sign up

Export Citation Format

Share Document