scholarly journals Localization of testis-variant histones in rat testis chromatin

1982 ◽  
Vol 205 (1) ◽  
pp. 15-21 ◽  
Author(s):  
M R S Rao ◽  
B J Rao ◽  
J Ganguly

Nucleosome core particles and oligonucleosomes were isolated by digesting rat testis nuclei with micrococcal nuclease to 20% acid-solubility, followed by fractionation of the digest on a Bio-Gel A-5m column. The core particles thus isolated were characterized on the basis of their DNA length of 151 +/- 5 base-pairs and sedimentation coefficient of 11.4S. Analysis of the acid-soluble proteins of the core particles indicated that histones TH2B and X2 are constituents of the core particles, in addition to the somatic histones H2A, H2B, H3 and H4. The acid-soluble proteins of the oligonucleosomes comprised all the histones, including both the somatic (H1, H2A, H2B, H3, H4 and X2) and the testis-specific ones (TH1 and TH2B). It was also observed that histones TH1 and H1 are absent from the core particles and were readily extracted from the chromatin by 0.6 M-NaCl, which indicated that both of them are bound to the linker DNA.

The nucleosome is the basic repeating unit of chromatin (see review by Kornberg (1977)). It is a complex of histone protein molecules with a length of DNA, which digestion studies with the enzyme micrococcal nuclease have shown to be often about 200 base pairs in length but with quite wide variations between different cell species. With sufficient digestion, however, a ‘core’ particle is produced, which for all species so far investigated contains close to 145 base pairs of DNA associated with an octamer of pairs of the histones H3, H4, H2A and H2B. The molecular mass of the core particle is about 200000, roughly equally divided between DNA and protein.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiangyan Shi ◽  
Chinmayi Prasanna ◽  
Aghil Soman ◽  
Konstantin Pervushin ◽  
Lars Nordenskiöld

Abstract The dynamics of eukaryotic nucleosomes are essential in gene activity and well regulated by various factors. Here, we elucidated the internal dynamics at multiple timescales for the human histones hH3 and hH4 in the Widom 601 nucleosome core particles (NCP), suggesting that four dynamic networks are formed by the residues exhibiting larger-scale μs-ms motions that extend from the NCP core to the histone tails and DNA. Furthermore, despite possessing highly conserved structural features, histones in the telomeric NCP exhibit enhanced μs-ms dynamics in the globular sites residing at the identified dynamic networks and in a neighboring region. In addition, higher mobility was observed for the N-terminal tails of hH3 and hH4 in the telomeric NCP. The results demonstrate the existence of dynamic networks in nucleosomes, through which the center of the core regions could interactively communicate with histone tails and DNA to potentially propagate epigenetic changes.


1981 ◽  
Vol 50 (1) ◽  
pp. 209-224
Author(s):  
J.M. Levin ◽  
P.R. Cook

When HeLa cells are lysed in solutions containing a non-ionic detergent and 2 M-NaCl, structures are released that retain many of the morphological features of nuclei. These nucleoids contain all the nuclear RNA and DNA but few of the proteins characteristic of chromatin. Their DNA is supercoiled and so intact. Using a simple and rapid procedure we have reconstructed nucleohistone complexes from nucleoids and the ‘core’ histones without breaking the DNA. We have probed the integrity and structure of the reconstructed complexes using a non-destructive fluorometric approach, which provides a general method for detecting agents that bind to DNA and alter its supercoiling. The superhelical status of the DNA in the reconstructed complexes is indistinguishable from that found in control nucleoids containing core histones. Experiments with micrococcal nuclease confirm that the DNA in the reconstructed complexes is organized into nucleosome-like structures. These, however, are spaced 145 base-pairs apart and not 200 base-pairs apart as is found in native chromatin.


Biochemistry ◽  
1987 ◽  
Vol 26 (12) ◽  
pp. 3643-3649 ◽  
Author(s):  
James E. Morgan ◽  
James W. Blankenship ◽  
Harry R. Matthews

2020 ◽  
Vol 118 (3) ◽  
pp. 226a
Author(s):  
Yuxing Ma ◽  
Obinna Ukogu ◽  
Ashley Carter

Biochemistry ◽  
2004 ◽  
Vol 43 (16) ◽  
pp. 4773-4780 ◽  
Author(s):  
Aurélie Bertin ◽  
Amélie Leforestier ◽  
Dominique Durand ◽  
Françoise Livolant

Sign in / Sign up

Export Citation Format

Share Document