scholarly journals Erythrocruorin from the water-flea Daphnia magna. Quaternary structure and arrangement of subunits

1982 ◽  
Vol 207 (2) ◽  
pp. 297-303 ◽  
Author(s):  
E Ilan ◽  
E Weisselberg ◽  
E Daniel

The subunit structure of erythrocruorin from the cladoceran Daphnia magna was studied. The native protein was found to have a sedimentation coefficient (S2(20), w) of 17.9 +/- 0.2 S and a molecular weight, as determined by sedimentation equilibrium, of 494 000 +/- 33 000. Iron and haem determinations gave 0.312 +/- 0.011% and 3.84 +/- 0.04%, corresponding to minimal molecular weights of 17900 +/- 600 and 16 100 +/- 200 respectively. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave one band with mobility corresponding to a molecular weight of 31 000 +/- 1 500. The molecular weight of the polypeptide chain determined by sedimentation equilibrium in 6 M-guanidinium chloride and 0.1 M-2-mercaptoethanol is 31 100 +/- 1300. On a molecular-weight basis, Daphnia erythrocruorin is composed of 16 identical polypeptide chains carrying two haem groups each. The native structure is stable between pH5 and 8.5. At alkaline and acidic pH, a gradual decrease in the sedimentation coefficient down to 9.8S occurs. Above pH 10 and below pH4, a slow component with S20, w between 2.7S and 4.0S is observed. The 2.7S, 4.0S and 9.8S species are identified as single-chain subunits, subunit dimers and half-molecules respectively. We propose a model for the molecule composed of 16 2.7S subunits grouped in two layers stacked in an eclipsed orientation, the eight subunits of each layer occupying the vertices of a regular eight-sided polygon. Support for this arrangement is provided from electron microscopy and from analysis of the pH-dissociation pattern.

1979 ◽  
Vol 183 (2) ◽  
pp. 325-330 ◽  
Author(s):  
E Ilan ◽  
E Daniel

Haemoglobin from the tadpole shrimp, Lepidurus apus lubbocki, was found to have a sedimentation coefficient (s020,w) of 19.3 +/- 0.2 S and a molecular weight, as determined by sedimentation equilibrium, of 798000 +/- 20000. The amino acid composition showed the lack of cysteine and cystine residues. A haem content of 3.55 +/- 0.03% was determined, corresponding to a minimal mol.wt. of 17400 +/- 200. The pH-independence in the range pH 5-11 of the sedimentation coefficient indicates a relatively high stability of the native molecule. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave one band with mobility corresponding to a mol.wt. of 34000 +/- 1500. The molecular weight of the polypeptide chain was determined to be 32800 +/- 800 by sedimentation equilibrium in 6 M-guanidinium chloride and 0.1 M-2-mercaptoethanol. The findings indicate that Lepidurus haemoglobin is composed of 24 identical polypeptide chains, carrying two haem groups each.


1987 ◽  
Vol 65 (12) ◽  
pp. 1039-1048 ◽  
Author(s):  
William C. McCubbin ◽  
Cyril M. Kay ◽  
Theresa D. Kennedy ◽  
Byron G. Lane

The size and structure of germin, the homooligomeric glycoprotein which marks the onset of growth in germinating wheat embryos, has been examined by gel filtration, ultracentrifugation, electron microscopy, chemical cross-linking, and optical techniques (circular dichroism). Germin has a sedimentation coefficient (S20,w) of 7.3S, and a Stokes' radius (RS) of 4.5 nm, the latter value being compatible with the dimensions of the particle observed by negative staining in the electron microscope. By three methods (sedimentation equilibrium, sodium dodecyl sulphate (SDS) – polyacrylamide electrophoresis, S20,w/RS), the mean particle mass of the two closely related forms of germin (G and G′) is ca. 130 kilodaltons (kDa). Cross-linking with dimethyl suberimidate indicates that the oligomer is homopentameric, compatible with the molecular mass of the protomer (ca. 26 kDa) as determined by SDS–polyacrylamide gel electrophoresis. Using the Provencher and Glockner analysis to interpret circular dichroism measurements (in the far ultraviolet), both forms of germin contain about 10–20% α-helical structure, 50–60% β-sheet/turn structure, and 20–30% random coil. In a structure-inducing environment (45% trifluoroethanol), the α-helical structure increases to a value (35–40%) similar to that predicted by Chou–Fasman analysis of the protein sequence deduced by cDNA sequencing.


1978 ◽  
Vol 56 (10) ◽  
pp. 927-933 ◽  
Author(s):  
W. S. Lin ◽  
M. Kapoor

Glutamine synthetase (EC 6.3.1.2) of Neurospora crassa was purified to near homogeneity by chromatography on a glutamate–Sepharose affinity column. Its properties, including molecular weight, subunit structure, amino acid composition, and approximate α-helix content, have been examined. In the native state, this enzyme has been demonstrated by gel filtration to be an octamer of molecular weight 360 000 and as having a sedimentation coefficient of 13.2 S by sedimentation velocity measurements. Circular dichroism spectra in the far ultraviolet range suggest an approximate α-helix content of 23–24%. The subunit generated by treatment with urea was found to be 45 000 daltons by gel filtration methods and a molecular weight of 46 000 was calculated for the monomer obtained by sodium dodecyl sulphate (SDS) treatment and electrophoresis in SDS-polyacrylamide gels. Interprotomeric cross-linking experiments, using diimidoesters, suggest the presence of two noncovalently linked tetramers comprising the native octameric structure. Amino acid analyses revealed the presence of six tryptophans, four half cystines, and nine methionine residues per monomer of 45 000 daltons.


1981 ◽  
Vol 197 (2) ◽  
pp. 367-375 ◽  
Author(s):  
M Paulsson ◽  
D Heinegård

The cartilage matrix protein is a major non-collagenous protein in bovine cartilage. It was purified from a 5 M-guanidinium chloride extract of bovine tracheal cartilage by sequential CsCl-density-gradient centrifugation, gel chromatography in guanidinium chloride and differential precipitation. The molecular weight of the intact protein is 148 000, determined by sedimentation-equilibrium centrifugation. It was dissociated to three subunits of molecular weight 52 000 by reduction of disulphide bonds. The cartilage matrix protein was insoluble in low-salt solutions and behaved abnormally on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The content of cysteine was high, whereas the contents of aromatic amino acids were low. The carbohydrate content was 3.9% (w/w). Glycopeptides obtained after papain digestion were heterogenous on gel chromatography. Asparagine/aspartic acid was enriched in the purified glycopeptides, indicating the presence of N-glycosidic linkages to protein.


1972 ◽  
Vol 126 (2) ◽  
pp. 361-379 ◽  
Author(s):  
K. A. Cammack ◽  
D. I. Marlborough ◽  
D. S. Miller

1. l-Asparaginases from Erwinia carotovora and Escherichia coli (EC2 enzyme) are both capable of inhibiting and eliminating certain types of tumour cells. The Er. carotovora enzyme is a more basic protein, however, and in contrast with the EC2 enzyme it contains neither tryptophan nor cystine, and disulphide bonds are therefore absent. The molecule is very stable in solution from pH3.0 to about pH12.0, and is somewhat more stable at alkaline pH than is the Esch. coli enzyme. Calculations based on a s020,w 7.43S and a sedimentation-equilibrium molecular weight of 135000±10000 give a frictional ratio (f/f0) of 1.08. The molecular conformation is therefore very compact in solution, and the electron microscope shows the negatively stained molecules as almost spherical particles with a diameter of 7.2±0.7nm. 2. Sedimentation-velocity and equilibrium ultracentrifugation, in 5–8m solutions of urea and guanidinium chloride, and also electrophoresis in sodium dodecyl sulphate–polyacrylamide gel, reveal a dissociation of the native protein molecule into four subunits of similar molecular weight in the range 32500–38000. The enzymically inactive subunits can be physically reassembled into an active tetramer when urea is removed by dialysis. Although the subunit structures of the Er. carotovora enzyme and the Esch. coli enzyme molecules are similar, the secondary bonding forces holding the subunits together in the tetramer are somewhat stronger in the Er. carotovora enzyme. 3. The optical-rotatory-dispersion (o.r.d.) parameters that characterize the Cotton effects arising from ordered structure in the molecule are [m′]233=−3522±74° and [m′]200=9096±1700°. These show very marked changes as the secondary structure is disrupted and the molecule dissociates into subunits. A correlation pathway was traced on the basis of o.r.d. parameters and enzyme activity as the polypeptide chains were denatured and renatured (and reconstituted) into active molecules after the dilution of solutions in urea. Subunits resulting from treatment with sodium dodecyl sulphate do not show the typically disordered o.r.d. profile, but nevertheless they are inactive.


1984 ◽  
Vol 224 (1) ◽  
pp. 59-66 ◽  
Author(s):  
A Franzén ◽  
D Heinegård

The proteoglycans characterized were those isolated from the calcified matrix of mature bovine bone [Franzén & Heinegård (1984) Biochem. J. 224, 47-58]. The average molecular mass of the bone proteoglycan is 74 600 Da, determined by sedimentation-equilibrium centrifugation in 4M-guanidinium chloride. Its sedimentation coefficient (s0(20),w) is 3.04 S. The apparent Mr of its core protein is 46 000, estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the chondroitinase ABC-digested proteoglycan. A more likely molecular mass of the core protein is 30 000 Da, as calculated from the molecular mass and the protein content (40%) of the proteoglycan. The bone proteoglycan contains one or probably two chondroitin sulphate chains each with a molecular mass (weight-average) of 33 700 Da and several oligosaccharides both of the N-glycosidically and the O-glycosidically linked type. Antibodies against the homogeneous bone proteoglycans were raised in rabbits. An e.l.i.s.a. (enzyme-linked immunosorbent assay) method was developed that allowed specific quantification of bone proteoglycans at nanogram levels. The specificity of the antibodies was tested by using the e.l.i.s.a. method. The bone proteoglycan showed partial cross-reactivity with the small proteoglycan of cartilage. The antibodies were used to localize immunoreactivity of bone proteoglycans by indirect immunofluorescence in frozen sections of foetal bovine epiphysial growth plate. The fluorescence was entirely found in the primary spongiosa, and no fluorescence was found among the hypertrophied chondrocytes or in the region of provisional calcification.


1974 ◽  
Vol 141 (2) ◽  
pp. 413-418 ◽  
Author(s):  
David J. Wright ◽  
Donald Boulter

Zonal isoelectric precipitation was shown to be an effective method for the preparation of legumin which was homogeneous as judged by ultracentrifugation and polyacrylamide-gel electrophoresis. The subunit structure of legumin was investigated by preparative sodium dodecyl sulphate–polyacrylamide-gel electrophoresis and ion-exchange chromatography in urea. Five distinct subunits, of which two were acidic (α) and had a molecular weight of 37000, and three were basic (β) with molecular weights of 20100, 20900 and 23800, were identified. The α and β subunits were present in equimolar amounts in the legumin molecule and, in view of this and molecular-weight considerations, an α6β6 subunit model was proposed for legumin.


1982 ◽  
Vol 152 (2) ◽  
pp. 757-761
Author(s):  
V L Sheladia ◽  
J P Chambers ◽  
J Guevara ◽  
D J Evans

A hemagglutinin which specifically agglutinates human type A erythrocytes (mannose resistant) was isolated from the growth medium of cultures of Escherichia coli GV-12, serotype O1:H-, and purified by chromatography on Bio-Gel A-1.5 and DEAE-Sephadex A-25. The purity of the hemagglutinin was established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoelectrophoresis. N-terminus analysis indicated that only asparagine resides on the amino terminus. The native hemagglutinin is an aggregate exhibiting a sedimentation coefficient of 9.25, which corresponds to a molecular weight of approximately 200,000. The monomeric molecular weight was found to be approximately 16,300. Amino acid analysis indicated that the hemagglutinin consists of 131 residues, corresponding to a molecular weight of 13,400.


1983 ◽  
Vol 209 (3) ◽  
pp. 753-761 ◽  
Author(s):  
S Bhakdi ◽  
J Tranum-Jensen

The terminal membrane C5b-9(m) and fluid-phase SC5b-9 complexes of rabbit complement were isolated from target sheep erythrocyte membranes and from inulin-activated rabbit serum respectively. In the electron microscope, rabbit C5b-9(m) was observed as a hollow protein cylinder, a structure identical with that of human C5b-9(m). Monodispersed rabbit C5b-9(m) exhibited an apparent sedimentation coefficient of 29 S in deoxycholate-containing sucrose density gradients, corresponding to a composite protein-detergent molecular-weight of approx. 1.4×10(6). Protein subunits corresponding to human C5b-C9 were found on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. By densitometry, there were consistently six molecules of monomeric C9 present for each monomeric C5b-8 complex. Fluid-phase rabbit SC5b-9 was a hydrophilic 23 S ma macromolecule that differed in subunit composition from its membrane counterpart in that it contained S-protein and only two to three molecules of C9 per monomer complex. The data are in accord with the previous report on human C5b-9 that C5b-9(m) contains more C9 molecules than SC5b-9 [Ware & Kolb (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6426-6430]. They corroborate the previous molecular-weight estimate of approx. 10(6) for C5b-9(m) and thus support the concept that the fully assembled, unit lesion of complement is a C5b-9 monomer [Bhakdi & Tranum-Jensen (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1818-1822]. They also show that C9 dimer formation is not required for assembly of the rabbit C5b-9(m) protein cylinder, or for expression of its membrane-damaging function.


1981 ◽  
Vol 197 (2) ◽  
pp. 427-436 ◽  
Author(s):  
G A Nimmo ◽  
J R Coggins

Neurospora crassa contains three isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, which are inhibited by tyrosine, tryptophan and phenylalanine respectively, and it was estimated that the relative proportions of the total activity were 54%, 14% and 32% respectively. The tryptophan-sensitive isoenzyme was purified to homogeneity as judged by polyacrylamide-gel electrophoresis and ultracentrifugation. The tyrosine-sensitive and phenylalanine-sensitive isoenzymes were only partially purified. The three isoenzymes were completely separated from each other, however, and can be distinguished by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and Ultrogel AcA-34 and polyacrylamide-gel electrophoresis. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate indicated that the tryptophan-sensitive isoenzyme contained one type of subunit of molecular weight 52000. The molecular weight of the native enzyme was found to be 200000 by sedimentation-equilibrium centrifugation, indicating that the enzyme is a tetramer, and the results of cross-linking and gel-filtration studies were in agreement with this conclusion.


Sign in / Sign up

Export Citation Format

Share Document