scholarly journals Reversible inhibition of protein synthesis in lung by halothane

1983 ◽  
Vol 210 (2) ◽  
pp. 379-387 ◽  
Author(s):  
D E Rannels ◽  
R Christopherson ◽  
C A Watkins

Alterations in the synthesis and degradation of proteins were investigated in intact lungs exposed to the volatile anaesthetic halothane. In rat lungs perfused in situ with Krebs-Henseleit bicarbonate buffer containing 4.5% (w/v) bovine serum albumin, 5.6 mM-glucose, plasma concentrations of 19 amino acids and 690 microM-[U-14C]-phenylalanine and equilibrated with O2/N2/CO2 (4:15:1), protein synthesis, calculated based on the specific radioactivity of aminoacyl-tRNA, was inhibited by halothane. The anaesthetic did not affect degradation of lung proteins. The inhibition of protein synthesis was rapid in onset, dose-dependent, and quickly reversible. It did not appear to be associated with overall energy depletion, with non-specific changes in cellular permeability, or with decreased availability of amino acids as substrates for protein synthesis.

1980 ◽  
Vol 188 (1) ◽  
pp. 269-278 ◽  
Author(s):  
Clyde A. Watkins ◽  
D. Eugene Rannels

Compartmentalization of amino acid was investigated to define conditions required for accurate measurements of rates of protein synthesis in rat lungs perfused in situ. Lungs were perfused with Krebs–Henseleit bicarbonate buffer containing 4.5% (w/v) bovine serum albumin, 5.6mm-glucose, normal plasma concentrations of 19 amino acids, and 8.6–690μm-[U-14C]phenylalanine. The perfusate was equilibrated with the same humidified gas mixture used to ventilate the lungs [O2/CO2 (19:1) or O2/N2/CO2 (4:15:1)]. [U-14C]Phenylalanine was shown to be a suitable precursor for studies of protein synthesis in perfused lungs: it entered the tissue rapidly (t½, 81s) and was not converted to other compounds. As perfusate phenylalanine was decreased below 5 times the normal plasma concentration, the specific radioactivity of the pool of phenylalanine serving as precursor for protein synthesis, and thus [14C]phenylalanine incorporation into protein, declined. In contrast, incorporation of [14C]histidine into lung protein was unaffected. At low perfusate phenylalanine concentrations, rates of protein synthesis that were based on the specific radioactivity of phenylalanyl-tRNA were between rates calculated from the specific radioactivity of phenylalanine in the extracellular or intracellular pools. Rates based on the specific radioactivities of these three pools of phenylalanine were the same when extracellular phenylalanine was increased. These observations suggested that: (1) phenylalanine was compartmentalized in lung tissue; (2) neither the extracellular nor the total intracellular pool of phenylalanine served as the sole source of precursor for protein; (3) at low extracellular phenylalanine concentrations, rates of protein synthesis were in error if calculated from the specific radioactivity of the free amino acid; (4) at high extracellular phenylalanine concentrations, the effects of compartmentalization were negligible and protein synthesis could be calculated accurately from the specific radioactivity of the free or tRNA-bound phenylalanine pool.


1981 ◽  
Vol 198 (1) ◽  
pp. 53-65 ◽  
Author(s):  
J A Hammer ◽  
D E Rannels

Conditions were defined under which rates of protein synthesis and degradation could be estimated in alveolar macrophages isolated from rabbits by pulmonary lavage and incubated in the presence of plasma concentrations of amino acids and 5.6 mM-glucose. Phenylalanine was validated as suitable precursor for use in these studies: it was not metabolized appreciably, except in the pathways of protein synthesis and degradation; it entered the cells rapidly; it maintained a stable intracellular concentration; and it was incorporated into protein at measurable rates. When extracellular phenylalanine was raised to a concentration sufficient to minimize dilution of the specific radioactivity of the precursor for protein synthesis with amino acid derived from protein degradation, the specific radioactivity of phenylalanyl-tRNA was only 60% of that of the extracellular amino acid. This relationship was unchanged in cells where proteolysis increased 2.5-fold after uptake and degradation of exogenous bovine serum albumin. In contrast, albumin prevented the decrease in phenylalanine incorporation observed in macrophages deprived of an exogenous source of amino acids. These observations suggested that macrophages preferentially re-utilized amino acids derived from the degradation of endogenous, but not from exogenous (albumin), protein. However, when the extracellular supply of amino acids was restricted, substrates derived from albumin catabolism could support the protein-synthetic pathway.


1968 ◽  
Vol 109 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Joan P. Roscoe ◽  
M. D. Eaton ◽  
Gladys Chin Choy

1. The inhibition of incorporation of 14C-labelled amino acids into protein of whole cells by phenylalanine has been reproduced in a cell-free system. In both cases only the l-isomer was inhibitory. 2. The effect of phenylalanine on incorporation of [14C]leucine and [14C]lysine into protein was different in both whole cells and cell-free systems. 3. In whole cells inhibition of incorporation of leucine at 2·5μg./ml. was very rapid, but when the concentration was increased to 100μg./ml. the inhibition was not apparent for about 1hr. The kinetics of inhibition of lysine was the same at both these concentrations and was similar to that found with leucine at 100μg./ml. 4. Neither a lower specific radioactivity of the two amino acids in the pool nor a decrease in their pool size could be consistently related with inhibition of protein synthesis. 5. In the cell-free system l-phenylalanine inhibited the incorporation of leucine but not of lysine. 6. Charging of transfer RNA by leucine was markedly decreased in the presence of phenylalanine, whereas charging of transfer RNA by lysine was not.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


1976 ◽  
Vol 231 (2) ◽  
pp. 441-448 ◽  
Author(s):  
JB Li ◽  
AL Goldberg

The effects of food deprivation on protein turnover in rat soleus and extensor digitorum longus (EDL) were investigated. Muscles were removed from fed or fasted growing rats, and protein synthesis and breakdown were measured during incubation in vitro. Rates of synthesis and degradation were higher in the dark soleus than in the pale EDL. One day after food removal protein synthesis and RNA content in the EDL decreased. On the 2nd day of fasting, rates of protein catabolism in this muscle increased. Little or no change in synthesis and degradation occurred in the soleus. Consequently, during fasting the soleus lost much less weight than the EDL and other rat muscles. In unsupplemented buffer or in medium containing amino acids, glucose, and insulin, the muscles of fasted rats showed a lower rate of protein synthesis expressed per milligram of tissue but not per microgram of RNA. Thus the decrease in muscle RNA on fasting was responsible for the reduced synthesis observed under controlled in vitro conditions. In vivo the reduction in muscle protein synthesis on fasting results both from a lower RNA content and lower rate of synthesis per microgram of RNA. Reduced supply of glucose, insulin, and amino acids may account for the lower rate of synthesis per microgram of RNA demonstrable in vivo.


Metabolism ◽  
1992 ◽  
Vol 41 (9) ◽  
pp. 925-933 ◽  
Author(s):  
Armando R. Tovar ◽  
Jean K. Tews ◽  
Nimbe Torres ◽  
David C. Madsen ◽  
Alfred E. Harper

1968 ◽  
Vol 107 (5) ◽  
pp. 615-623 ◽  
Author(s):  
R. W. Wannemacher ◽  
W. K. Cooper ◽  
M. B. Yatvin

Weanling (23-day-old) rats were fed either on an amino acid-deficient diet (6% of casein, which in effect represents an ‘amino acid-deficient’ diet) or on a diet containing an adequate amount of protein (18% of casein) for 28 days. The hepatic cells from the animals fed on the low-protein diet were characterized by low amino acid content, almost complete inhibition of cell proliferation and a marked decrease in cell volume, protein content and concentration of cytoplasmic RNA compared with cells from control rats. The lower concentration of cytoplasmic RNA was correlated with a decreased ribosomal-RNA content, of which a larger proportion was in the form of free ribosomes. The protein-synthetic competence and messenger-RNA content of isolated ribosomes from liver cells of protein-deprived animals were 40–50% of those noted in controls. At 1hr. after an injection of radioactive uridine, the specific radioactivity of liver total RNA was greater in the group fed on the low-protein diet, but the amount of label that was associated with cytoplasmic RNA or ribosomes was significantly less than that noted in control animals. From these data it was concluded that dietary amino acids regulate hepatic protein synthesis (1) by affecting the ability of polyribosomes to synthesize protein and (2) by influencing the concentration of cytoplasmic ribosomes. It is also tentatively hypothesized that the former process may be directly related to the concentration of cellular free amino acids, whereas the latter could be correlated with the ability of newly synthesized ribosomal sub-units to leave the nucleus.


1973 ◽  
Vol 134 (4) ◽  
pp. 1127-1130 ◽  
Author(s):  
Edward B. Fern ◽  
Peter J. Garlick

Infusion of rats with [U-14C]glycine resulted in labelling of glycine and serine in tissue proteins. The pattern of labelling in protein more nearly resembled that of the free amino acids in the tissue than in the plasma.


Sign in / Sign up

Export Citation Format

Share Document