scholarly journals The regulation of protein synthesis in the liver of rats. Mechanisms of dietary amino acid control in the immature animal

1968 ◽  
Vol 107 (5) ◽  
pp. 615-623 ◽  
Author(s):  
R. W. Wannemacher ◽  
W. K. Cooper ◽  
M. B. Yatvin

Weanling (23-day-old) rats were fed either on an amino acid-deficient diet (6% of casein, which in effect represents an ‘amino acid-deficient’ diet) or on a diet containing an adequate amount of protein (18% of casein) for 28 days. The hepatic cells from the animals fed on the low-protein diet were characterized by low amino acid content, almost complete inhibition of cell proliferation and a marked decrease in cell volume, protein content and concentration of cytoplasmic RNA compared with cells from control rats. The lower concentration of cytoplasmic RNA was correlated with a decreased ribosomal-RNA content, of which a larger proportion was in the form of free ribosomes. The protein-synthetic competence and messenger-RNA content of isolated ribosomes from liver cells of protein-deprived animals were 40–50% of those noted in controls. At 1hr. after an injection of radioactive uridine, the specific radioactivity of liver total RNA was greater in the group fed on the low-protein diet, but the amount of label that was associated with cytoplasmic RNA or ribosomes was significantly less than that noted in control animals. From these data it was concluded that dietary amino acids regulate hepatic protein synthesis (1) by affecting the ability of polyribosomes to synthesize protein and (2) by influencing the concentration of cytoplasmic ribosomes. It is also tentatively hypothesized that the former process may be directly related to the concentration of cellular free amino acids, whereas the latter could be correlated with the ability of newly synthesized ribosomal sub-units to leave the nucleus.

1976 ◽  
Vol 36 (2) ◽  
pp. 219-230
Author(s):  
P. G. Lunn ◽  
R. G. Whitehead ◽  
B. A. Baker

1. Free amino acid concentrations in the plasma have been compared with those in liver and quadriceps muscle, in rats fed on diets containing 209 (control) and 31 (low-protein) g protein/kg. The effects of the low-protein diet on diurnal variations in these values were also measured.2. In the plasma, the total amino acid concentration was significantly lower in animals given the low-protein diet, at all times of day except 12.00 hours. In the liver, and to a lesser extent the muscle, total amino acid concentration was maintained.3. In the control animals, diurnal variation in the concentrations of both essential and non-essential amino acids was very similar in plasma, liver and muscle. In animals given the low-protein diet, although the same diurnal pattern was maintained for non-essential amino acids, that occurring among the essential amino acids had virtually disappeared.4. In plasma, the mean 24 h concentration of essential amino acids decreased from 24· mmol/l in control animals to only 1·29 mmol/l in the low-protein-fed animals. Concentrations in muscle and liver were reduced by a similar proportion (from 8·6 to 5·56 μmol/g and from 8·67 to 5·05 μmol/g respectively). Conversely the concentrations of non-essential amino acids in animals given the low-protein diet were increased in plasma (from 1·53 to 2·00 mmol/l), muscle (from 12·5 to 14·3 μmol/g), and liver (from 16·8 to 20·5 μmol/g), muscle showing the lowest increase.5. With the exceptions of lysine, threonine, cystine and tyrosine, the concentrations of all other essential amino acids were reduced more in liver than in muscle. The relationship between this and the failure to maintain plasma albumin concentrations is discussed.


1998 ◽  
Vol 334 (1) ◽  
pp. 147-153 ◽  
Author(s):  
Céline JOUSSE ◽  
Alain BRUHAT ◽  
Marc FERRARA ◽  
Pierre FAFOURNOUX

Protein undernutrition is characterized by growth failure in young growing animals. Current evidence suggests that biosynthesis of insulin-like growth factor (IGF)-I and IGF-binding protein 1 (IGFBP-1) are key control points for nutritional regulation of growth. Here we examined the role of amino acid limitation in regulating the IGFBP-1 expression in the hepatic cell line. Our data show that leucine limitation strongly induces IGFBP-1 without affecting IGF-I and IGF-II expression in human HepG2 cells and in isolated rat hepatocytes. Depletion of arginine, cystine and all essential amino acids leads to induction of IGFBP-1 mRNA and protein expression in a dose-dependent manner. IGFBP-1 expression is significantly induced by leucine concentration in the range of that observed in the blood of rats fed a low-protein diet or in humans affected by kwashiorkor. Moreover, treatment of HepG2 cells with amino acids at a concentration reproducing the amino acid concentration found in portal blood of rats fed a low-protein diet leads to a significantly higher expression of IGFBP-1. These data represent the first demonstration that an amino acid limitation, as occurs during dietary protein deficiency, induces IGFBP-1 expression in hepatic cells. Therefore, amino acids by themselves can play, in concert with hormones, an important role in the control of gene expression.


1973 ◽  
Vol 53 (3) ◽  
pp. 455-464
Author(s):  
A. CECYRE ◽  
G. M. JONES ◽  
J.-M. GAUDREAU

Semipurified diets, varying in crude protein (CP) content (6, 10, 15, and 22% CP), were each fed to one wether and plasma amino acid (PAA) concentrations were determined at 0, 15, 30, 60, 120, 240, and 360 min postfeeding. Total essential amino acid concentrations for the 6, 10, and 15% CP rations were 47.2, 76.4, and 72.9 μmol/ml, while nonessential amino acids totalled 88.3, 110.0, and 104.9 μmol/ml, respectively. In general, PAA concentrations were depressed by the low protein diet, except for glycine, which was elevated, and threonine and alanine, which were not affected. PAA concentrations gradually decreased with time after feeding. There was no evident relationship between PAA levels and amount of feed consumed at these time intervals. Lysine was probably the most limiting amino acid, based upon PAA concentrations on the low protein diet compared to average PAA levels for all diets. PAA concentrations reflected dietary nitrogen content. The results suggest that PAA levels were not involved in the regulation of voluntary intake when the diet contained sufficient protein to meet the requirements of the animal.


1975 ◽  
Vol 41 (3) ◽  
pp. 683-689
Author(s):  
Samuel N. Craddock ◽  
Arthur J. Riopelle

Following an opportunity to demonstrate a preference for water with or without the addition of the amino acid isoleucine, methionine, phenylalanine, or tryptophan at a concentration proportional to that in whole egg protein, 9 monkeys were subjected on 4 occasions to a 7-day experimental week when they received an isocaloric diet containing only one-fourth the amount of protein of their normal diet. An identical low-protein diet supplemented with one of the above amino acids, again at a concentration proportional to that in egg, was presented for an equivalent period during the experimental week and the amounts consumed of each diet were compared. Ss failed to exhibit a preference or an aversion for water supplemented with any of the amino acids; however, all low-protein diets supplemented with an amino acid were consumed in greater quantities than a low-protein diet lacking a supplement. On Days 6 and 7 of the experimental weeks when protein depletion was most severe, Ss significantly ( p < .05) preferred the diet supplemented with isoleucine to a diet lacking the supplement.


1972 ◽  
Vol 128 (3) ◽  
pp. 521-530 ◽  
Author(s):  
S. D. Alexis ◽  
S. Basta ◽  
Vernon R. Young

1. Aspects of skeletal muscle protein synthesis in vitro were studied in young rats given a low-protein diet for up to 10 days and during re-feeding with an adequate diet. 2. Partially purified muscle transfer factors (transferases I and II), crude and purified (NH4Cl-washed) ribosomes and a pH5 enzyme fraction were prepared for this purpose. 3. A marked decrease in the capacity of crude ribosomes to carry out cell-free polypeptide synthesis occurred within 4 days of feeding the low-protein diet. 4. The capacity of salt-washed ribosomes to promote amino acid polymerization, in the presence of added transfer factors and aminoacyl-tRNA, was only slightly decreased by the dietary treatment. 5. However, the capacity of salt-washed ribosomes to bind 14C-labelled aminoacyl-tRNA was decreased by feeding the low-protein diet. 6. The capacity of the pH5 enzyme fraction to promote amino acid incorporation in a complete cell-free system was decreased within 2 days of feeding the low-protein diet. There is no evidence that the change is associated with aminoacyl-tRNA synthetase or binding enzyme activities of the pH5 fractions. 7. These changes are discussed in relation to the diminished rate of protein synthesis in the intact muscle cell when rats are given a low-protein diet.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 281-282
Author(s):  
Cedrick N Shili ◽  
Mohammad Habibi ◽  
Julia Sutton ◽  
Jessie Barnes ◽  
Jacob Burchkonda ◽  
...  

Abstract Moderately low protein (MLP) diets can help decrease nutrient excretion from the swine production. However, MLP diets negatively impact growth performance. We hypothesized that supplementing MLP diets with phytogenics may reduce the negative effects of these diets on growth. The objective of this study was to investigate the effect of a phytogenic water additive (PWA; Herbanimal®) on growth performance, blood metabolite and gene expression of amino acids transporters in pigs fed with MLP diets. Forty-eight weaned barrows were allotted to six dietary treatments (n = 8) for 4 weeks: &gt;CON-NS: standard protein diet-no PWA; CON-LS: standard protein diet-low PWA dose (4 ml/L); CON-HS: standard protein diet-high PWA dose (8 ml/L); LP-NS: low protein diet-no PWA; LP-LS: low protein diet-low PWA dose (4 ml/L); LP-HS: low protein diet- high PWA dose (8 ml/L). Feed intake and body weight were recorded daily and weekly, respectively. At week 4, blood and tissue samples were collected and analyzed for metabolites using a chemistry analyzer and amino acid transporters using qPCR, respectively. The data were analyzed by univariate GLM (SPSS®) and the means were separated using paired Student’s t-test corrected by Benjamini-Hochberg. Pigs fed CON-HS improved the average daily gain and serum calcium and phosphorus concentrations compared to CON-NS. Pigs fed LP-LS had higher serum phosphorus and blood urea nitrogen compared to the pigs fed with LP-NS. The mRNA abundance of SLC7A11 in the jejunum was lower in CON-LS and CON-HS compared to CON-NS. Additionally, mRNA abundance of SLC6A19 in the jejunum of pigs fed with LP-LS was higher compared to LP-NS and lower in CON-HS relative to pigs fed with CON-LS. In conclusion, PWA improved the growth performance of pigs fed standard protein diets but not low protein diets. Further, the PWA improved the concentrations of blood calcium and phosphorous in pigs fed MLP diets. Funding: Agrivida and Animal Health and Production and Animal Products: Improved Nutritional Performance, Growth, and Lactation of Animals from the USDA-NIFA.


PEDIATRICS ◽  
1964 ◽  
Vol 33 (3) ◽  
pp. 403-412 ◽  
Author(s):  
Barton Childs ◽  
William L. Nyhan

Observations of a patient with hyperglycinemia have been extended. The patient, who has been subsisting on a low protein diet, has shown some improvement in the clinical manifestations though he has failed to grow. Loading experiments have increased the list of amino acids capable of inducing ketosis and symptoms in the patient to five: leucine, isoleucine, valine, threonine, and methionine. Eleven other amino acids have been similarly tested and were found to be beneficial, reducing the toxicity of the five ketogenic amino acids. Blood levels of the amino acids have been measured under a variety of circumstances. When given alone, the toxic amino acids were found to accumulate in the blood. Such accumulations were less striking when the nonketogenic amino acids were given together with the ketogenic ones. The patient has been benefitted by a diet low in protein which has been supplemented by the innocuous amino acids.


2006 ◽  
Vol 6 (1) ◽  
pp. 47-59
Author(s):  
Nancy Montilla ◽  
◽  
Lolito Bestil ◽  
Sulpecio Bantugan ◽  

A feeding trial with broilers was conducted to evaluate the effects of amino acids (lysine and methionine) supplementation of diets low in protein content on the voluntary intake, feed conversion efficiency, broiler performance, and cost and return of broiler production. Results showed cumulative voluntary feed intake was not significantly affected by lowering the protein content of the diet. Cumulative weight gain of broilers was lower with diet when supplemented iwht lysine and methionine to meet requirements. Birds fed with diets low in protein has less efficient feed converstion, but became comparable with those receiveing diets high in protein when supplemented with amino acids. Feed cost per kilogram broiler produced was not significantly affected by diets used in the study, although the low-protien diet with amino acid supplement had the lowest values. In terms of return above feed and chick cost, broilers fed with high-protein diet had the greatest value, but not significantly different from birds fed with low-protien diet with amino acid supplementation which gave about P10 per bird higher returns than those fed low-protein diet without amino acid supplementation.


Sign in / Sign up

Export Citation Format

Share Document