scholarly journals Mutations in the uncE gene affecting assembly of the c-subunit of the adenosine triphosphatase of Escherichia coli

1983 ◽  
Vol 211 (3) ◽  
pp. 717-726 ◽  
Author(s):  
D A Jans ◽  
A L Fimmel ◽  
L Langman ◽  
L B James ◽  
J A Downie ◽  
...  

The amino acid substitutions in the mutant c-subunits of Escherichia coli F1F0-ATPase coded for by the uncE429, uncE408 and uncE463 alleles affect the incorporation of these proteins into the cell membrane. The DNA sequence of the uncE429 allele differed from normal in that a G leads to A base change occurred at nucleotide 68 of the uncE gene, resulting in glycine being replaced by aspartic acid at position 23 in the c-subunit. The uncE408 and uncE463 mutant DNA sequences were identical and differed from normal in that a C leads to T base change occurred at nucleotide 91 of the uncE gene, resulting in leucine being replaced by phenylalanine at position 31 in the c-subunit. An increased gene dosage of the uncE408 or uncE463 alleles resulted in the incorporation into the membranes of the mutant c-subunits. The results are discussed in terms of the ‘Helical Hairpin Hypothesis’ of Engelman & Steitz [(1981) Cell 23,411-422].

1983 ◽  
Vol 213 (2) ◽  
pp. 451-458 ◽  
Author(s):  
A L Fimmel ◽  
D A Jans ◽  
L Langman ◽  
L B James ◽  
G R Ash ◽  
...  

The uncE410 allele differs from the normal uncE gene in that C leads to T base changes occur at nucleotides 190 and 191, resulting in proline at position 64 in the c-subunit of the F1F0-ATPase being replaced by leucine. Two partial-revertant strains were isolated in which alanine-20 of the c-subunit was replaced by proline, owing to a G leads to C base change at nucleotide 58. These c-subunits, coded for by the uncE501 and uncE502 alleles, therefore contained two amino acid changes, namely proline-64 leads to leucine, and alanine-20 leads to proline. Membranes prepared from the partial-revertant strains lacked ATP-dependent atebrin-fluorescence-quenching activity but were able to carry out oxidative phosphorylation. The ATPase activity of the F1-ATPase was inhibited when bound to membranes from strains carrying the uncE410, uncE501 and uncE502 alleles. It is concluded that a bend in the helix axis in one of the arms of the c-subunit hairpin structure is required for integration of the c-subunit into a functional F1F0-ATPase.


1988 ◽  
Vol 263 (28) ◽  
pp. 14276-14280 ◽  
Author(s):  
T Kawakami ◽  
Y Akizawa ◽  
T Ishikawa ◽  
T Shimamoto ◽  
M Tsuda ◽  
...  

2000 ◽  
Vol 182 (1) ◽  
pp. 221-224 ◽  
Author(s):  
Christina Wilson Bowers ◽  
Andrea McCracken ◽  
Alicia J. Dombroski

ABSTRACT Amino acid substitutions in Escherichia coliς70 were generated and characterized in an analysis of the role of region 1.1 in transcription initiation. Several acidic and conserved residues are tolerant of substitution. However, replacement of aspartic acid 61 with alanine results in inactivity caused by structural and functional thermolability.


FEBS Journal ◽  
2007 ◽  
Vol 274 (13) ◽  
pp. 3363-3373 ◽  
Author(s):  
Augustin Ofiteru ◽  
Nadia Bucurenci ◽  
Emil Alexov ◽  
Thomas Bertrand ◽  
Pierre Briozzo ◽  
...  

2003 ◽  
Vol 185 (21) ◽  
pp. 6385-6391 ◽  
Author(s):  
Jenny G. Smith ◽  
Jamie A. Latiolais ◽  
Gerald P. Guanga ◽  
Sindhura Citineni ◽  
Ruth E. Silversmith ◽  
...  

ABSTRACT In a two-component regulatory system, an important means of signal transduction in microorganisms, a sensor kinase phosphorylates a response regulator protein on an aspartyl residue, resulting in activation. The active site of the response regulator is highly charged (containing a lysine, the phosphorylatable aspartate, two additional aspartates involved in metal binding, and an Mg2+ ion), and introduction of the dianionic phosphoryl group results in the repositioning of charged moieties. Furthermore, substitution of one of the Mg2+-coordinating aspartates with lysine or arginine in the Escherichia coli chemotaxis response regulator CheY results in phosphorylation-independent activation. In order to examine the consequences of altered charge distribution for response regulator activity and to identify possible additional amino acid substitutions that result in phosphorylation-independent activation, we made 61 CheY mutants in which residues close to the site of phosphorylation (Asp57) were replaced by various charged amino acids. Most substitutions (47 of 61) resulted in the complete loss of CheY activity, as measured by the inability to support clockwise flagellar rotation. However, 10 substitutions, all introducing a new positive charge, resulted in the loss of chemotaxis but in the retention of some clockwise flagellar rotation. Of the mutants in this set, only the previously identified CheY13DK and CheY13DR mutants displayed clockwise activity in the absence of the CheA sensor kinase. The absence of negatively charged substitution mutants with residual activity suggests that the introduction of additional negative charges into the active site is particularly deleterious for CheY function. Finally, the spatial distribution of positions at which amino acid substitutions are functionally tolerated or not tolerated is consistent with the presently accepted mechanism of response regulator activation and further suggests a possible role for Met17 in signal transduction by CheY.


1987 ◽  
Vol 890 (2) ◽  
pp. 195-204 ◽  
Author(s):  
G.B. Cox ◽  
L. Hatch ◽  
D. Webb ◽  
A.L. Fimmel ◽  
Z.-H. Lin ◽  
...  

2019 ◽  
Vol 116 (31) ◽  
pp. 15651-15660
Author(s):  
Qun Gao ◽  
Anchun Cheng ◽  
John S. Parkinson

Motile Escherichia coli cells use chemoreceptor signaling arrays to track chemical gradients with exquisite precision. Highly conserved residues in the cytoplasmic hairpin tip of chemoreceptor molecules promote assembly of trimer-based signaling complexes and modulate the activity of their CheA kinase partners. To explore hairpin tip output states in the serine receptor Tsr, we characterized the signaling consequences of amino acid replacements at the salt-bridge residue pair E385-R388. All mutant receptors assembled trimers and signaling complexes, but most failed to support serine chemotaxis in soft agar assays. Small side-chain replacements at either residue produced OFF- or ON-shifted outputs that responded to serine stimuli in wild-type fashion, suggesting that these receptors, like the wild-type, operate as two-state signaling devices. Larger aliphatic or aromatic side chains caused slow or partial kinase control responses that proved dependent on the connections between core signaling units that promote array cooperativity. In a mutant lacking one of two key adapter-kinase contacts (interface 2), those mutant receptors exhibited more wild-type behaviors. Lastly, mutant receptors with charged amino acid replacements assembled signaling complexes that were locked in kinase-ON (E385K|R) or kinase-OFF (R388D|E) output. The hairpin tips of mutant receptors with these more aberrant signaling properties probably have nonnative structures or dynamic behaviors. Our results suggest that chemoeffector stimuli and adaptational modifications influence the cooperative connections between core signaling units. This array remodeling process may involve activity-dependent changes in the relative strengths of interface 1 and 2 interactions between the CheW and CheA.P5 components of receptor core signaling complexes.


Sign in / Sign up

Export Citation Format

Share Document