scholarly journals Secretion and glycosylation of α-foetoprotein by the mouse yolk sac

1983 ◽  
Vol 212 (2) ◽  
pp. 313-320 ◽  
Author(s):  
R G Janzen ◽  
T Tamaoki

Secretion and glycosylation of alpha-foetoprotein (AFP) by mouse yolk sac were studied by using yolk-sac explants cultured in vitro. Yolk-sac explants rapidly incorporated [35S]methionine into AFP, whereas radioactively labelled AFP was not found in the medium until 30 min after incubation was initiated. Electrophoretic analysis revealed that microheterogeneity of AFP synthesized in explants increased in parallel with the gestational age of the yolk sacs. The change in microheterogeneity was noted by the formation of increasingly acidic forms. Only the most acidic forms of AFP were found to be present in the medium on each gestational day studied. Tunicamycin reduced the incorporation of glucosamine into AFP with a concomitant decrease in molecular weight and microheterogeneity. However, the relative amount of AFP released into the medium was not altered by the presence of tunicamycin. The presence of under-glycosylated AFP in the medium indicates that glycosylation of AFP is not essential for its secretion from the yolk sac. In light of these and previous findings, it is suggested that the glycosylation of AFP may be important for the turnover of this glycoprotein in serum.

Reproduction ◽  
2002 ◽  
pp. 261-268 ◽  
Author(s):  
TA Stout ◽  
WR Allen

A growing equine conceptus must suppress the cyclical release of PGF(2 alpha) from the endometrium to effect maternal recognition of its presence in the uterus. Paradoxically, the conceptus itself secretes PGF(2 alpha), together with other prostaglandins. In this study, the PGF(2 alpha) and PGE(2) content of, and production in vitro by, day 10-32 equine conceptuses were measured and the influence of pregnancy on the concentrations of these prostaglandins in the uterine lumen was examined. In vitro, the release of both prostaglandins per mg conceptus tissue was very high on day 10 after ovulation and lower thereafter. However, while PGF(2 alpha) production decreased further after day 18 of gestation, PGE(2) production remained high until day 32. Prostaglandin concentrations in yolk sac fluid were unaffected by gestational age and PGE(2) concentrations in this compartment were two to five times higher than PGF(2a) concentrations. PGF(2 alpha) concentrations reached high values in uterine flushings recovered from cyclic mares during days 14-16 after ovulation, the expected time of luteolysis, but were negligible in flushings recovered from pregnant mares at this time. Beyond day 18 of gestation, PGF(2 alpha) concentrations in uterine flushings were high and strikingly similar to those recorded during cyclical luteolysis. It is concluded that the equine conceptus effects maternal recognition of pregnancy primarily by inhibiting the ability of the endometrium to release PGF(2 alpha) during days 12-16 after ovulation. However, the conceptus appears to delay, rather than prevent, the development of the uterine PGF(2 alpha) release pathway and an alternative mechanism must prevent luteolysis from being triggered during days 18-32 of gestation.


1981 ◽  
Vol 196 (1) ◽  
pp. 49-55 ◽  
Author(s):  
R Duncan ◽  
M K Pratten ◽  
H C Cable ◽  
H Ringsdorf ◽  
J B Lloyd

Rates of pinocytosis of different molecular-weight distributions of 125I-labelled poly(vinylpyrrolidone) by rat visceral yolk sacs and rat peritoneal macrophages were measured in vitro. Four preparations of mean molecular weights 50 000, 84 000, 700 000 and 7 000 000, were used. Macrophages captured the highest-molecular-weight preparation more rapidly than the other preparations. In contrast, rate of capture by the yolk sac decreased with increasing molecular weight. Incubations with a very-high-molecular-weight fraction derived from the 7 000 000-average-mol. wt. preparation clearly demonstrated that very large polymer molecules are not accumulated by the yolk sac, but are preferentially captured by macrophages. Analysis of the 125I-labelled poly(vinylpyrrolidone) internalized by the two cell types confirmed that low-molecular-weight material is preferred by the yolk sac, whereas the macrophage is less discriminating.


Author(s):  
N.I. Parkhomenko ◽  
◽  
L.A. Maksymenko ◽  
L.F. Didenko ◽  
◽  
...  

The isolated cymbidium mosaic virus (CMV) is one of the most wide-spread and dangerous pathogens that infects promising varieties of orchids. It causes characteristic symptoms on orchid plants, which are manifested in the form of a mosaic. Over time, these areas are necrotized, leading to the stop of flowering the plants and reducing their decorative value. The CyMV is not spread by insects-carriers, but is transmitted by the mechanical inoculation with juice. Electron microscopy revealed flexible filamentous viral particles with a length of about 500 nm. The purified viral preparation is sedimented with a single peak with a sedimentation coefficient of 142S. The floating density of the virus in the preformed CsCl gradient corresponded to 1.3 g/cm3. The electrophoretic analysis of proteins in polyacrylamide gel under denatured conditions showed the presence of two polypeptides with molecular weights of 27 and 31 kDa. RNA CyMV has a molecular weight of 2 · 106 Da. In the translation system of rabbit reticulocytes in vitro, a protein with a molecular weight of about 27 kDa is synthesized. The obtained data allow us to refer CyMV to the group of potexviruses.


1999 ◽  
Vol 82 (11) ◽  
pp. 1462-1468 ◽  
Author(s):  
José Fernández ◽  
Jari Petäjä ◽  
John Griffin

SummaryUnfractionated heparin potentiates the anticoagulant action of activated protein C (APC) through several mechanisms, including the recently described enhancement of proteolytic inactivation of factor V. Possible anticoagulant synergism between APC and physiologic glycosaminoglycans, pharmacologic low molecular weight heparins (LMWHs), and other heparin derivatives was studied. Dermatan sulfate showed potent APC-enhancing effect. Commercial LMWHs showed differing abilities to promote APC activity, and the molecular weight of LMWHs correlated with enhancement of APC activity. Degree of sulfation of the glycosaminoglycans influenced APC enhancement. However, because dextran sulfates did not potentiate APC action, the presence of sulfate groups per se on a polysaccharide is not sufficient for APC enhancement. As previously for unfractionated heparin, APC anticoagulant activity was enhanced by glycosaminoglycans when factor V but not factor Va was the substrate. Thus, dermatan sulfate and LMWHs exhibit APC enhancing activity in vitro that could be of physiologic and pharmacologic significance.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


1961 ◽  
Vol 06 (01) ◽  
pp. 015-024 ◽  
Author(s):  
Sven Erik Bergentz ◽  
Oddvar Eiken ◽  
Inga Marie Nilsson

Summary1. Infusions of low molecular weight dextran (Mw = 42 000) to dogs in doses of 1—1.5 g per kg body weight did not produce any significant changes in the coagulation mechanism.2. Infusions of high molecular weight dextran (Mw = 1 000 000) to dogs in doses of 1—1.5 g per kg body weight produced severe defects in the coagulation mechanism, namely prolongation of bleeding time and coagulation time, thrombocytopenia, pathological prothrombin consumption, decrease of fibrinogen, prothrombin and factor VII, factor V and AHG.3. Heparin treatment of the dogs was found to prevent the decrease of fibrinogen, prothrombin and factor VII, and factor V otherwise occurring after injection of high molecular weight dextran. Thrombocytopenia was not prevented.4. In in vitro experiments an interaction between fibrinogen and dextran of high and low molecular weight was found to take place in systems comprising pure fibrinogen. No such interaction occurred in the presence of plasma.5. It is concluded that the coagulation defects induced by infusions of high molecular weight dextran are due to intravascular coagulation.


1964 ◽  
Vol 12 (01) ◽  
pp. 232-261 ◽  
Author(s):  
S Sasaki ◽  
T Takemoto ◽  
S Oka

SummaryTo demonstrate whether the intravascular precipitation of fibrinogen is responsible for the toxicity of heparinoid, the relation between the toxicity of heparinoid in vivo and the precipitation of fibrinogen in vitro was investigated, using dextran sulfate of various molecular weights and various heparinoids.1. There are close relationships between the molecular weight of dextran sulfate, its toxicity, and the quantity of fibrinogen precipitated.2. The close relationship between the toxicity and the precipitation of fibrinogen found for dextran sulfate holds good for other heparinoids regardless of their molecular structures.3. Histological findings suggest strongly that the pathological changes produced with dextran sulfate are caused primarily by the intravascular precipitates with occlusion of the capillaries.From these facts, it is concluded that the precipitates of fibrinogen with heparinoid may be the cause or at least the major cause of the toxicity of heparinoid.4. The most suitable molecular weight of dextran sulfate for clinical use was found to be 5,300 ~ 6,700, from the maximum value of the product (LD50 · Anticoagulant activity). This product (LD50 · Anticoagulant activity) can be employed generally to assess the comparative merits of various heparinoids.5. Clinical use of the dextran sulfate prepared on this basis gave satisfactory results. No severe reaction was observed. However, two delayed reactions, alopecia and thrombocytopenia, were observed. These two reactions seem to come from the cause other than intravascular precipitation.


1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


Sign in / Sign up

Export Citation Format

Share Document