scholarly journals γ-Glutamyltransferase is not involved in the bulk uptake of amino acids, peptides or γ-glutamyl-amino acids in yeast (Saccharomyces cerevisiae)

1984 ◽  
Vol 218 (1) ◽  
pp. 147-155 ◽  
Author(s):  
G M Payne ◽  
J W Payne

gamma-Glutamyltransferase activity has been measured in yeast (Saccharomyces cerevisiae) and shown to be associated mainly with the membrane fraction. A similar level of activity is found in a wild-type strain and in gap and gpp strains, the latter mutants being defective in the general amino acid and peptide permeases respectively. The activity is inhibited in whole cells by 6-diazo-5-oxo-L-norleucine (N2O-Nle), azaserine and serine-borate complex; this inactivation seemingly acts from without, for it is similar in (i) control and dicyclohexylcarbodi-imide-treated cells and in (ii) the wild-type and a gap mutant, a treatment and a mutation that it has been shown prevents uptake of the inhibitors. Thus a major portion of the gamma-glutamyltransferase activity appears to exist in a membrane-bound form that is orientated with its gamma-glutamyl-binding site facing the outside. Yeast cells in which gamma-glutamyltransferase has been inactivated by N2O-Nle show no significant change in their rates of uptake of a variety of amino acids, dipeptides and gamma-glutamyl-amino acids. The results preclude a major, direct role for gamma-glutamyltransferase in the transport of these substrates.

1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1978 ◽  
Vol 24 (6) ◽  
pp. 637-642 ◽  
Author(s):  
K. C. Thomas ◽  
Mary Spencer

Effects of the carbon source and oxygen on ethylene production by the yeast Saccharomyces cerevisiae have been studied. The amounts of ethylene evolved by the yeast culture were less than those detected in the blank (an equal volume of uninoculated medium), suggesting a net absorption of ethylene by the yeast cells. Addition of glucose to the lactate-grown yeast culture induced ethylene production. This glucose-induced stimulation of ethylene production was inhibited to a great extent by cycloheximide. Results suggested that the yeast cells in the presence of glucose synthesized an ethylene precursor and passed it into the medium. The conversion of this precursor to ethylene might be stimulated by oxygen. The fact that ethylene was produced by the yeast growing anaerobically and also by respiration-deficient mutants isolated from the wild-type yeast suggested that mitochondrial ATP synthesis was not an absolute requirement for ethylene biogenesis.


1990 ◽  
Vol 110 (1) ◽  
pp. 105-114 ◽  
Author(s):  
B K Haarer ◽  
S H Lillie ◽  
A E Adams ◽  
V Magdolen ◽  
W Bandlow ◽  
...  

We have isolated profilin from yeast (Saccharomyces cerevisiae) and have microsequenced a portion of the protein to confirm its identity; the region microsequenced agrees with the predicted amino acid sequence from a profilin gene recently isolated from S. cerevisiae (Magdolen, V., U. Oechsner, G. Müller, and W. Bandlow. 1988. Mol. Cell. Biol. 8:5108-5115). Yeast profilin resembles profilins from other organisms in molecular mass and in the ability to bind to polyproline, retard the rate of actin polymerization, and inhibit hydrolysis of ATP by monomeric actin. Using strains that carry disruptions or deletions of the profilin gene, we have found that, under appropriate conditions, cells can survive without detectable profilin. Such cells grow slowly, are temperature sensitive, lose the normal ellipsoidal shape of yeast cells, often become multinucleate, and generally grow much larger than wild-type cells. In addition, these cells exhibit delocalized deposition of cell wall chitin and have dramatically altered actin distributions.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1981 ◽  
Vol 196 (2) ◽  
pp. 531-536 ◽  
Author(s):  
J R Woodward ◽  
H L Kornberg

The general amino acid permease (‘Gap’) system of the wild-type yeast (Saccharomyces cerevisiae) strain Y185 is inhibited by the uptake and accumulation of its substrate amino acids. Surprisingly, this inhibition persists even after ‘pools’ of amino acids, accumulated initially, have returned to normal sizes. Recovery from this inhibition depends on a supply of energy and involves the synthesis of a membrane protein component of the Gap system.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114 ◽  
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


1989 ◽  
Vol 9 (2) ◽  
pp. 390-395 ◽  
Author(s):  
S Powers ◽  
K O'Neill ◽  
M Wigler

Two mutant alleles of RAS2 were discovered that dominantly interfere with wild-type RAS function in the yeast Saccharomyces cerevisiae. An amino acid substitution which caused the dominant interference was an alanine for glycine at position 22 or a proline for alanine at position 25. Analogous mutations in human H-ras also dominantly inhibited RAS function when expressed in yeast cells. The inhibitory effects of the mutant RAS2 or H-ras genes could be overcome by overexpression of CDC25, but only in the presence of wild-type RAS. These results suggest that these mutant RAS genes interfere with the normal interaction of RAS and CDC25 proteins and suggest that this interaction is direct and has evolutionarily conserved features.


1989 ◽  
Vol 9 (2) ◽  
pp. 390-395
Author(s):  
S Powers ◽  
K O'Neill ◽  
M Wigler

Two mutant alleles of RAS2 were discovered that dominantly interfere with wild-type RAS function in the yeast Saccharomyces cerevisiae. An amino acid substitution which caused the dominant interference was an alanine for glycine at position 22 or a proline for alanine at position 25. Analogous mutations in human H-ras also dominantly inhibited RAS function when expressed in yeast cells. The inhibitory effects of the mutant RAS2 or H-ras genes could be overcome by overexpression of CDC25, but only in the presence of wild-type RAS. These results suggest that these mutant RAS genes interfere with the normal interaction of RAS and CDC25 proteins and suggest that this interaction is direct and has evolutionarily conserved features.


2000 ◽  
Vol 47 (2) ◽  
pp. 355-364 ◽  
Author(s):  
A Swieciło ◽  
Z Krawiec ◽  
J Wawryn ◽  
G Bartosz ◽  
T Biliński

A correlation is known to exist in yeast and other organisms between the cellular resistance to stress and the life span. The aim of this study was to examine whether stress treatment does affect the generative life span of yeast cells. Both heat shock (38 degrees C, 30 min) and osmotic stress (0.3 M NaCl, 1 h) applied cyclically were found to increase the mean and maximum life span of Saccharomyces cerevisiae. Both effects were more pronounced in superoxide dismutase-deficient yeast strains (up to 50% prolongation of mean life span and up to 30% prolongation of maximum life span) than in their wild-type counterparts. These data point to the importance of the antioxidant barrier in the stress-induced prolongation of yeast life span.


Sign in / Sign up

Export Citation Format

Share Document