scholarly journals Very-high-field n.m.r. studies of bovine lung heparan sulphate tetrasaccharides produced by nitrous acid deaminative cleavage. Determination of saccharide sequence, uronate composition and degrees of sulphation

1984 ◽  
Vol 223 (2) ◽  
pp. 495-505 ◽  
Author(s):  
P N Sanderson ◽  
T N Huckerby ◽  
I A Nieduszynski

Tetrasaccharides with the general structure UA-GlcNAc-GlcUA-aManOH (where UA represents uronate, GlcNAc N-acetylglucosamine, GlcUA glucuronate and aManOH anhydromannitol) were prepared from low-sulphated heparan sulphates of bovine lung origin by complete nitrous acid deaminative cleavage followed by reduction and fractionated by gel filtration. Ion-exchange chromatography of the tetrasaccharides yielded three major fractions in approximate yields of 37%, 45% and 14%. These were shown to be non-, mono- and di-sulphated respectively. Complete structural characterization of the tetrasaccharide fractions by quantitative high-field n.m.r. spectroscopy showed that each fraction contained only two discrete species and led to the following observations. (1) All of the uronate residues in the tetrasaccharides (and in larger oligosaccharides) are unsulphated, and hence sulphated iduronate [IdUA(2SO3)] must occur exclusively within -GlcNSO3-IdUA(2SO3)-GlcNSO3- sequences (where GlcNSO3 represents N-sulpho-glucosamine) in the parent polymers. (2) The GlcNAc residues in the tetrasaccharides are more highly C-6-O-sulphated than are the aManOH residues, and furthermore sulphation on the aManOH appears to occur only where the GlcNAc is also sulphated. (3) Where the GlcNAc is C-6-O-sulphated, iduronate is the major non-reducing terminal residue, whereas glucuronate predominates in this position if the GlcNAc is unsulphated. The quantitative data obtained are used to determine the degree of C-6-O-sulphation of glucosamine residues in specific sequences within the parent heparan sulphates.

1983 ◽  
Vol 211 (3) ◽  
pp. 677-682 ◽  
Author(s):  
P N Sanderson ◽  
I A Nieduszynski ◽  
T N Huckerby

Oligosaccharides with the general structure UA-(GlcNAc-GlcUA-)m-aManOH (m = 1-5) (where UA represents uronic acid, GlcNAc N-acetylglucosamine, GlcUA glucuronic acid and aManOH anhydromannitol) were prepared from low-sulphated heparan sulphates of bovine lung origin by nitrous acid deaminative cleavage followed by reduction. Analysis of the methylene signals in the 100 MHz 13C-n.m.r. spectrum of the tetrasaccharide (m = 1) shows that, whereas the extent of C-6 O-sulphation in the GlcNAc is approx. 65%, in the aManOH [formerly a GlcNSO3 (N-sulphoglucosamine) residue in the parent heparan sulphate] it is only approx. 10%. In the higher oligosaccharides (m = 2-5) the gross extent of C-6 O-sulphation of GlcNAc residues falls systematically with increasing oligosaccharide size, whereas that in the aManOH residues remains below 10%. There is also evidence that the C-6 O-sulphation of the GlcNAc residues is confined to the GlcNAc residue adjacent to the non-reducing terminal uronic acid residue. It is therefore tentatively proposed that the GlcNAc in the sequence -GlcNSO3-UA-GlcNAc- might be a favoured substrate for the 6-O-sulphotransferase. It is concluded that in the low-sulphated heparan sulphates GlcNSO3 residues that do not occur in (GlcNSO3-UA-)n blocks tend to have a significantly smaller extent of C-6 O-sulphation than do GlcNAc residues that occur in -GlcNSO3-UA-GlcNAc-GlcUA-GlcNSO3-sequences.


1992 ◽  
Vol 288 (2) ◽  
pp. 565-569 ◽  
Author(s):  
F Bonnet ◽  
J P Perin ◽  
P Maillet ◽  
P Jolles ◽  
P M Alliel

A glycosaminoglycan-bearing polypeptide (S.GP), present in human seminal plasma, was purified to homogeneity by a combination of CsCl density-gradient centrifugation, f.p.l.c. ion-exchange chromatography on a Mono Q HR column and Superose 6 gel filtration. The observed polydispersity of S.GP was attributed to the heterogeneity of its glycosaminoglycan content. Enzymic deglycosylation experiments and N-terminal amino-acid sequence determination indicate that it consists of a polypeptide (apparent molecular mass approx. 18 kDa) bearing both chondroitin and heparan sulphate chains. Evidence is given that S.GP contains a glycosaminoglycan-linkage domain of a so far uncharacterized gene product, proteolytically processed in the genital tract.


1984 ◽  
Vol 51 (01) ◽  
pp. 016-021 ◽  
Author(s):  
S Birken ◽  
G Agosto ◽  
B Lahiri ◽  
R Canfield

SummaryIn order to investigate the early release of NH2-terminal plasmic fragments from the Bβ chain of fibrinogen, substantial quantities of Bβ 1-42 and Bβ 1-21 are required as immunogens, as radioimmunoassay standards and for infusion into human volunteers to determine the half-lives of these peptides. Towards this end methods that employ selective proteolytic cleavage of these fragments from fibrinogen have been developed. Both the N-DSK fragment, produced by CNBr cleavage of fibrinogen, and Bβ 1-118 were employed as substrates for plasmin with the finding of higher yields from N-DSK. Bβ 1-42 and Bβ 1-21 were purified by gel filtration and ion-exchange chromatography on SP-Sephadex using volatile buffers. When the purified preparation of Bβ 1-42 was chromatographed on reverse-phase high performance liquid chromatography, two peaks of identical amino acid composition were separated, presumably due either to pyroglutamate or to amide differences.


2021 ◽  
Vol 75 (2-3) ◽  
pp. 119-131
Author(s):  
Albert A. Smith ◽  
Nicolas Bolik-Coulon ◽  
Matthias Ernst ◽  
Beat H. Meier ◽  
Fabien Ferrage

AbstractThe dynamics of molecules in solution is usually quantified by the determination of timescale-specific amplitudes of motions. High-resolution nuclear magnetic resonance (NMR) relaxometry experiments—where the sample is transferred to low fields for longitudinal (T1) relaxation, and back to high field for detection with residue-specific resolution—seeks to increase the ability to distinguish the contributions from motion on timescales slower than a few nanoseconds. However, tumbling of a molecule in solution masks some of these motions. Therefore, we investigate to what extent relaxometry improves timescale resolution, using the “detector” analysis of dynamics. Here, we demonstrate improvements in the characterization of internal dynamics of methyl-bearing side chains by carbon-13 relaxometry in the small protein ubiquitin. We show that relaxometry data leads to better information about nanosecond motions as compared to high-field relaxation data only. Our calculations show that gains from relaxometry are greater with increasing correlation time of rotational diffusion.


1981 ◽  
Vol 60 (3) ◽  
pp. 331-334 ◽  
Author(s):  
F. Gejyo ◽  
G. Ito ◽  
Y. Kinoshita

1. An unidentified ninhydrin-positive substance of an acidic nature was detected in the plasma of uraemic patients. This substance was isolated from haemodialysate by ion-exchange chromatography and gel filtration, and identified as a sulphur-containing amino acid: N-monoacetylcystine. 2. The quantitative determination of sulphur amino acids in plasma revealed that the plasma levels of cysteic acid, homocysteic acid, taurine, cystine and cystathionine as well as N-monoacetylcystine in uraemic patients were markedly higher than in normal subjects (P < 0.001 for each). However, the plasma levels of methionine in uraemic patients were within normal limits.


1980 ◽  
Vol 191 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Ingrid Sjöberg ◽  
Lars-Ȧke Fransson

1. 3H- and 35S-labelled heparan sulphate was isolated from monolayers of human lung fibroblasts and subjected to degradations by (a) deaminative cleavage and (b) periodate oxidation/alkaline elimination. Fragments were resolved by gel- and ion-exchange-chromatography. 2. Deaminative cleavage of the radioactive glycan afforded mainly disaccharides with a low content of ester-sulphate and free sulphate, indicating that a large part (approx. 80%) of the repeating units consisted of uronosyl-glucosamine-N-sulphate. Blocks of non-sulphated [glucuronosyl-N-acetyl glucosamine] repeats (3–4 consecutive units) accounted for the remainder of the chains. 3. By selective oxidation of glucuronic acid residues associated with N-acetylglucosamine, followed by scission in alkali, the radioactive glycan was degraded into a series of fragments. The glucuronosyl-N-acetylglucosamine-containing block regions yielded a compound N-acetylglucosamine–R, where R is the remnant of an oxidized and degraded glucuronic acid. Periodate-insensitive uronic acid residues were recovered in saccharides of the general structure glucosamine–(uronic acid–glucosamine)n–R. 4. Further degradations of these saccharides via deaminative cleavage and re-oxidations with periodate revealed that iduronic acid may be located in sequences such as glucosamine-N-sulphate→iduronic acid→N-acetylglucosamine. Occasionally the iduronic acid was sulphated. Blocks of iduronic acid-containing repeats may contain up to five consecutive units. Alternating arrangements of iduronic acid- and glucuronic acid-containing repeats were also observed. 5. 3H- and 35S-labelled heparan sulphates from sequential extracts of fibroblasts (medium, EDTA, trypsin digest, dithiothreitol extract, cell-soluble and cell-insoluble material) afforded similar profiles after both periodate oxidation/alkaline elimination and deaminative cleavage.


Author(s):  
Ismat Bibi ◽  
Haq Nawaz Bhatti

This study deals with purification and characterization of lignin peroxidase (LiP) isolated from Agaricus bitorqus A66 during decolorization of NOVASOL Direct Black dye. A laboratory scale experiment was conducted for maximum LiP production under optimal conditions. Purification & fractionation of LiP was performed on DEAE-Sepharose ion exchange chromatography followed by Sephadex G-50 gel filtration. The purified LiP has a specific activity of 519 U/mg with 6.73% activity recover. The optimum pH and temperature of purified LiP for the oxidation of veratryl alcohol were 6.8 and 45 °C, respectively. Michaelis-Menten kinetic constants (Vmax and Km) were determined using different concentrations of veratryl alcohol (1-35 mM). The Km and Vmax were 16.67 mM and 179.2 U/mL respectively, for veratryl alcohol oxidation as determined from the Lineweaver-Burk plot. Thermal inactivation studies were carried out at different temperatures to check the thermal stability of the enzyme. Enthalpy of activation decreased where Free energy of activation for thermal denaturation increased at higher temperatures. A possible explanation for the thermal inactivation of LiP at higher temperatures is also discussed.


2011 ◽  
Vol 63 (3) ◽  
pp. 747-756 ◽  
Author(s):  
A.K.M. Asaduzzaman ◽  
Habibur Rahman ◽  
Tanzima Yeasmin

An acid phosphatase has been isolated and purified from an extract of a germinating black gram seedling. The method was accomplished by gel filtration of a germinating black gram seedling crude extract on sephadex G-75 followed by ion exchange chromatography on DEAE cellulose. The acid phosphatase gave a single band on SDS-polyacrylamide slab gel electrophoresis. The molecular weight of the acid phosphatase determined by SDS-polyacrylamide slab gel electrophoresis was estimated to be 25 kDa. The purified enzyme showed maximum activity at pH 5 and at temperature of 55?C. Mg2+, Zn2+ and EDTA had an inhibitory effect on the activity of the acid phosphatase. Black gram seedling acid phosphatase was activated by K+, Cu2+ and Ba2+. The Km value of the enzyme was found to be 0.49 mM for pNPP as substrate.


2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


Sign in / Sign up

Export Citation Format

Share Document