scholarly journals The selectivity of action of the aspartic-proteinase inhibitor IA3 from yeast (Saccharomyces cerevisiae)

1985 ◽  
Vol 231 (3) ◽  
pp. 777-779 ◽  
Author(s):  
T Dreyer ◽  
M J Valler ◽  
J Kay ◽  
P Charlton ◽  
B M Dunn

The ability of the aspartic-proteinase inhibitor IA3 from yeast (Saccharomyces cerevisiae) to affect the activities of a range of mammalian and microbial aspartic proteinases was examined. The inhibitor appeared to be completely selective in that only the aspartic proteinase A from yeast was inhibited to any significant extent. IA3 thus represents the first example of a totally specific, naturally occurring, aspartic-proteinase inhibitor.

1966 ◽  
Vol 44 (8) ◽  
pp. 1099-1108 ◽  
Author(s):  
A. N. Inamdar ◽  
J. G. Kaplan

The inducible β-glucosidase present in crude extracts of cellobiose-grown bakers' yeast (Saccharomyces cerevisiae C) was purified 50-fold and found to be homogeneous in the ultracentrifuge, with a molecular weight of 313,000. The enzyme was virtually identical in its properties with the internal, cryptic enzyme of the yeast cell, revealed by butanol treatment of the suspensions. It was unlike the membrane-localized enzyme found at the surface of intact cells in its low affinity for cellobiose and methyl-β-glucoside as substrates and inhibitors. The enzyme was specific for the β configuration and had no activity against substrates such as α-glucosides, β-galactosides, or β-xylosides. It was highly active against both naturally occurring and synthetic substrates with aromatic aglycones, and may thus be classed as an aryl-β-glucosidase. The enzyme had weak hydrolytic activity against methyl-β-glucoside and cellobiose, but these compounds, unlike all of the aryl-β-glucosides tested, were not competitive inhibitors of its activity against the chromogenic substrate pNPG. There were about 40,000 molecules of enzyme per cell in fully induced cultures and the enzyme represented about 3% of the total protein of these cells.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 711-718 ◽  
Author(s):  
R L Keil ◽  
A D McWilliams

Abstract The preservation of sequence homogeneity and copy number of tandemly repeated genes may require specific mechanisms or regulation of recombination. We have identified mutations that specifically affect recombination among natural repetitions in the yeast Saccharomyces cerevisiae. The rrm3 mutation stimulates mitotic recombination in the naturally occurring tandem repeats of the rDNA and copper chelatin (CUP1) genes. This mutation does not affect recombination of several other types of repeated genes tested including Ty elements, mating type information and duplications created by transformation. In addition to stimulating exchange among the multiple CUP1 repeats at their natural chromosomal location, rrm3 also increases recombination of a duplication of CUP1 units present at his4. This suggests that the RRM3 gene may encode a sequence-specific factor that contributes to a global suppression of mitotic exchange in sequences that can be maintained as tandem arrays.


1986 ◽  
Vol 51 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Thomas Dreyer ◽  
Barbara Halkier ◽  
Ib Svendsen ◽  
Martin Ottesen

2016 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Titin Yulinery ◽  
Ratih M.Dewi

Tes kemampuan adalah salah satu kegiatan penting dalam pengendalian mutu dan jaminan kualitas mikrobiologi laboratorium untuk mengukur kompetensi analis dan analisis uji profisiensi membutuhkan persiapan Model mikroorganisme adalah kualitas standar dan validitas. Mikrobiologi uji kualitas produk kedelai utama diarahkan pada kehadiran Saccharomyces cerevisiae ragi (S. cerevisiae), S. Bailli, S. rouxii dankontaminan bakteri seperti Bacillus dan Deinococcus. Jenis ragi dan bakteri yang terlibat dalam proses dan dapat menjadi salah satu parameter kualitas penting dalam persiapan yang dihasilkan. Jumlah dan viabilitas bakteri dan ragi menjadi parameter utama dalam proses persiapan bahan uji. Jumlah tersebut adalah jumlah minimum yang berlaku dapat dianalisis. Jumlah ini harus dibawah 10 CFU diperlukan untuk menunjukkan tingkat hygienitas proses dan tingkat minimal kontaminasi. Viabilitas bakteri dan bahan tes ragi persiapan untuk tes kemahiran kecap yang diawetkan dengan L-pengeringan adalah teknik Deinococcus radiodurans (D. radiodurans) 16 tahun, 58 tahun S. cerevisiae, dan S. roxii 13 tahun. kata kunci: Viabilitas, Deinococcus, khamir, L-pengeringan, Proficiency AbstractProficiency test is one of the important activities in quality control and quality assurance microbiology laboratory for measuring the competence of analysts and analysis Proficiency test requires a model microorganism preparations are standardized quality and validity. Microbiological test of the quality of the main soy products aimed at thepresence of yeast Saccharomyces cerevisiae (S. cerevisiae), S. bailli, S. rouxii and bacterial contaminants such as Bacillus and Deinococcus. Types of yeasts and bacteria involved in the process and can be one of the important quality parameters in the preparation produced. The number and viability of bacteria and yeasts become themain parameters in the process of test preparation materials. The amount in question is the minimum number that is valid can be analyzed. This amount must be below 10 CFU required to indicate the level of hygienitas process and the minimum level of contamination. Viability of bacteria and yeast test preparation materials for proficiencytest of soy sauce that preserved by L-drying technique is Deinococcus radiodurans ( D. radiodurans ) 16 years, 58 years S. cerevisiae, and S. roxii 13 years. key words : Viability, Deinococcus, Khamir, L-drying, Proficiency


Tsitologiya ◽  
2018 ◽  
Vol 60 (7) ◽  
pp. 555-557 ◽  
Author(s):  
E. A. Alekseeva ◽  
◽  
T. A. Evstyukhina ◽  
V. T. Peshekhonov ◽  
V. G. Korolev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document