scholarly journals Structural studies on lamin. Similarities and differences between lamin and intermediate-filament proteins

1986 ◽  
Vol 238 (1) ◽  
pp. 305-308 ◽  
Author(s):  
D A D Parry ◽  
J F Conway ◽  
P M Steinert

Analysis of the amino acid sequences of lamins A and C has revealed that each chain has an almost continuous heptad-containing coiled-coil domain containing structural regularities in the linear disposition of the acidic and the basic residues. The data suggest that the lamin molecules are two-stranded ropes, that the two chains are parallel to one another and in axial register, and that the molecules aggregate in vivo through periodic ionic interactions. These results indicate that significant changes in stability of the nuclear envelope may be achieved between interphase and mitosis through changes in the degree of phosphorylation of the lamin proteins.

1986 ◽  
Vol 236 (3) ◽  
pp. 695-703 ◽  
Author(s):  
L M Dowling ◽  
W G Crewther ◽  
A S Inglis

Component 8c-1, one of four highly homologous component-8 subunit proteins present in the microfibrils of wool, was isolated as its S-carboxymethyl derivative and its amino acid sequence was determined. Large peptides were isolated after cleaving the protein chemically or enzymically and the sequence of each was determined with an automatic Sequenator. The peptides were ordered by sequence overlaps and, in some instances, by homology with known sequences from other component-8 subunits. The C-terminal residues were identified by three procedures. Full details of the various procedures used have been deposited as Supplementary Publication SUP 50133 (4 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1986) 233, 5. The result showed that the protein comprises 412 residues and has an Mr, including the N-terminal acetyl group, of 48,300. The sequence of residues 98-200 of component 8c-1 was found to correspond to the partial or complete sequences of four homologous type I helical segments previously isolated from helical fragments recovered from chymotryptic digests of microfibrillar proteins of wool [Crewther & Dowling (1971) Appl. Polym. Symp. 18, 1-20; Crewther, Gough, Inglis & McKern (1978) Text. Res. J. 48, 160-162; Gough, Inglis & Crewther (1978) Biochem. J. 173, 385]. Considered in relation to amino acid sequences of other intermediate-filament proteins, the sequence is in accord with the view that keratin filament proteins are of two types [Hanukoglu & Fuchs (1983) Cell (Cambridge, Mass.) 33, 915-924]. Filament proteins from non-keratinous tissues, such as desmin, vimentin, neurofilament proteins and the glial fibrillary acidic protein, which form monocomponent filaments, constitute a third type. It is suggested that as a whole the proteins from intermediate filaments be classed as filamentins, the three types at present identified forming subgroups of this class. The significant homologies between types I, II and III occur almost exclusively in segments of the chain that have been identified as having a coiled-coil structure together with the relatively short sections connecting these segments. The non-coiled-coil segments at the C- and N-termini show no significant homology between types, nor is homology in these segments apparent in all members of one type. Component 8c-1 does not show homology in its terminal segments with the known sequence of any other filamentin.(ABSTRACT TRUNCATED AT 400 WORDS)


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Alaa Hseiky ◽  
Marion Crespo ◽  
Sylvie Kieffer-Jaquinod ◽  
François Fenaille ◽  
Delphine Pflieger

(1) Background: The proteomic analysis of histones constitutes a delicate task due to the combination of two factors: slight variations in the amino acid sequences of variants and the multiplicity of post-translational modifications (PTMs), particularly those occurring on lysine residues. (2) Methods: To dissect the relationship between both aspects, we carefully evaluated PTM identification on lysine 27 from histone H3 (H3K27) and the artefactual chemical modifications that may lead to erroneous PTM determination. H3K27 is a particularly interesting example because it can bear a range of PTMs and it sits nearby residues 29 and 31 that vary between H3 sequence variants. We discuss how the retention times, neutral losses and immonium/diagnostic ions observed in the MS/MS spectra of peptides bearing modified lysines detectable in the low-mass region might help validate the identification of modified sequences. (3) Results: Diagnostic ions carry key information, thereby avoiding potential mis-identifications due to either isobaric PTM combinations or isobaric amino acid-PTM combinations. This also includes cases where chemical formylation or acetylation of peptide N-termini artefactually occurs during sample processing or simply in the timeframe of LC-MS/MS analysis. Finally, in the very subtle case of positional isomers possibly corresponding to a given mass of lysine modification, the immonium and diagnostic ions may allow the identification of the in vivo structure.


1993 ◽  
Vol 231 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Konrad Beck ◽  
Tony W. Dixon ◽  
Jürgen Engel ◽  
David A.D. Parry

2002 ◽  
Vol 159 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Christine L. Humphries ◽  
Heath I. Balcer ◽  
Jessica L. D'Agostino ◽  
Barbara Winsor ◽  
David G. Drubin ◽  
...  

Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.


2016 ◽  
Author(s):  
Wesley G. Chen ◽  
Jacob Witten ◽  
Scott C. Grindy ◽  
Niels Holten-Andersen ◽  
Katharina Ribbeck

AbstractThe nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG-domains consist of repeating units of FxFG, FG, or GLFG sequences, which can be interspersed with highly charged amino acid sequences. Despite the high density of charge exhibited in certain FG-domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Studying how individual charged amino acids contribute to nuclear pore selectivity is challenging with modern in vivo and in vitro techniques due to the complexity of nucleoporin sequences. Here, we present a rationally designed approach to deconstruct essential components of nucleoporins down to 14 amino acid sequences. With these nucleoporin-based peptides, we systematically dissect how charge type and placement of charge influences self-assembly and selective binding of FG-containing gels. Specifically, we find that charge type determines which hydrophobic substrates FG sequences recognize while spatial localization of charge tunes hydrophobic self-assembly and receptor selectivity of FG sequences.


Development ◽  
1989 ◽  
Vol 105 (2) ◽  
pp. 279-298
Author(s):  
H. Herrmann ◽  
B. Fouquet ◽  
W.W. Franke

To provide a basis for studies of the expression of genes encoding the diverse kinds of intermediate-filament (IF) proteins during embryogenesis of Xenopus laevis we have isolated and characterized IF protein cDNA clones. Here we report the identification of two types of Xenopus vimentin, Vim1 and Vim4, with their complete amino acid sequences as deduced from the cloned cDNAs, both of which are expressed during early embryogenesis. In addition, we have obtained two further vimentin cDNAs (Vim2 and 3) which are sequence variants of closely related Vim1. The high evolutionary conservation of the amino acid sequences (Vim1: 458 residues; Mr approximately 52,800; Vim4: 463 residues; Mr approximately 53,500) to avian and mammalian vimentin and, to a lesser degree, to desmin from the same and higher vertebrate species, is emphasized, including conserved oligopeptide motifs in their head domains. Using these cDNAs in RNA blot and ribonuclease protection assays of various embryonic stages, we observed a dramatic increase of vimentin RNA at stage 14, in agreement with immunocytochemical results obtained with antibody VIM-3B4. The significance of very weak mRNA signals detected in earlier stages is discussed in relation to negative immunocytochemical results obtained in these stages. The first appearance of vimentin has been localized to a distinct mesenchymal cell layer underlying the neural plate or tube, respectively. The results are discussed in relation to programs of de novo synthesis of other cytoskeletal proteins in amphibian and mammalian development.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1435-1442 ◽  
Author(s):  
Edward M. Conway ◽  
Saskia Pollefeyt ◽  
Jan Cornelissen ◽  
Inky DeBaere ◽  
Marta Steiner-Mosonyi ◽  
...  

Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is believed to play a role in oncogenesis. To elucidate further its physiologic role(s), we have characterized the murinesurvivin gene and complementary DNA (cDNA). The structural organization of the survivin gene, located on chromosome 11E2, is similar to that of its human counterpart, both containing 4 exons. Surprisingly, 3 full-length murine survivin cDNA clones were isolated, predicting the existence of 3 distinct survivin proteins. The longest open reading frame, derived from all 4 exons, predicts a 140-amino acid residue protein, survivin140, similar to human survivin, which contains a single IAP repeat and a COOH-terminal coiled-coil domain that links its function to the cell cycle. A second cDNA, which retains intron 3, predicts the existence of a 121-amino acid protein, survivin121 that lacks the coiled-coil domain. Removal of exon 2-derived sequences by alternative pre-messenger RNA (mRNA) splicing results in a third 40-amino acid residue protein, survivin40, lacking the IAP repeat and coiled-coil structure. Predictably, only recombinant survivin140 and survivin121 inhibited caspase-3 activity. All 3 mRNA species were variably expressed during development from 7.5 days postcoitum. Of the adult tissues surveyed, thymus and testis accumulated high levels of survivin140 mRNA, whereas survivin121-specific transcripts were detected in all tissues, while those representing survivin40 were absent. Human counterparts to the 3 survivin mRNA transcripts were identified in a study of human cells and tissues. The presence of distinct isoforms of survivin that are expressed differentially suggests that survivin plays a complex role in regulating apoptosis.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Lok-To Sham ◽  
Katelyn R. Jensen ◽  
Kevin E. Bruce ◽  
Malcolm E. Winkler

ABSTRACT The FtsEX protein complex has recently been proposed to play a major role in coordinating peptidoglycan (PG) remodeling by hydrolases with the division of bacterial cells. According to this model, cytoplasmic FtsE ATPase interacts with the FtsZ divisome and FtsX integral membrane protein and powers allosteric activation of an extracellular hydrolase interacting with FtsX. In the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus), a large extracellular-loop domain of FtsX (ECL1FtsX) is thought to interact with the coiled-coil domain of the PcsB protein, which likely functions as a PG amidase or endopeptidase required for normal cell division. This paper provides evidence for two key tenets of this model. First, we show that FtsE protein is essential, that depletion of FtsE phenocopies cell defects caused by depletion of FtsX or PcsB, and that changes of conserved amino acids in the FtsE ATPase active site are not tolerated. Second, we show that temperature-sensitive (Ts) pcsB mutations resulting in amino acid changes in the PcsB coiled-coil domain (CCPcsB) are suppressed by ftsX mutations resulting in amino acid changes in the distal part of ECL1FtsX or in a second, small extracellular-loop domain (ECL2FtsX). Some FtsX suppressors are allele specific for changes in CCPcsB, and no FtsX suppressors were found for amino acid changes in the catalytic PcsB CHAP domain (CHAPPcsB). These results strongly support roles for both ECL1FtsX and ECL2FtsX in signal transduction to the coiled-coil domain of PcsB. Finally, we found that pcsB CC(Ts) mutants (Ts mutants carrying mutations in the region of pcsB corresponding to the coiled-coil domain) unexpectedly exhibit delayed stationary-phase autolysis at a permissive growth temperature. IMPORTANCE Little is known about how FtsX interacts with cognate PG hydrolases in any bacterium, besides that ECL1FtsX domains somehow interact with coiled-coil domains. This work used powerful genetic approaches to implicate a specific region of pneumococcal ECL1FtsX and the small ECL2FtsX in the interaction with CCPcsB. These findings identify amino acids important for in vivo signal transduction between FtsX and PcsB for the first time. This paper also supports the central hypothesis that signal transduction between pneumococcal FtsX and PcsB is linked to ATP hydrolysis by essential FtsE, which couples PG hydrolysis to cell division. The classical genetic approaches used here can be applied to dissect interactions of other integral membrane proteins involved in PG biosynthesis. Finally, delayed autolysis of the pcsB CC(Ts) mutants suggests that the FtsEX-PcsB PG hydrolase may generate a signal in the PG necessary for activation of the major LytA autolysin as pneumococcal cells enter stationary phase.


Sign in / Sign up

Export Citation Format

Share Document