scholarly journals Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in human hepatoma cell line Hep G2. Effects of inhibitors of cholesterol synthesis on enzyme activity

1987 ◽  
Vol 241 (2) ◽  
pp. 345-351 ◽  
Author(s):  
A Boogaard ◽  
M Griffioen ◽  
L H Cohen

Incubating Hep G2 cells for 18 h with triparanol, buthiobate and low concentrations (less than 0.5 microM) of U18666A, inhibitors of desmosterol delta 24-reductase, of lanosterol 14 alpha-demethylase and of squalene-2,3-epoxide cyclase (EC 5.4.99.7) respectively, resulted in a decrease of the HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase activity. However, U18666A at concentrations higher than 3 microM increased the HMG-CoA reductase activity in a concentration-dependent manner. None of these inhibitors influenced directly the reductase activity in Hep G2 cell homogenates. Analysis by t.l.c. of 14C-labelled non-saponifiable lipids formed from either [14C]acetate or [14C]mevalonate during the cell incubations confirmed the sites of action of the drugs used. Beside the 14C-labelled substrates of the blocked enzymes and 14C-labelled cholesterol, another non-saponifiable lipid fraction was observed, which behaves as polar sterols on t.l.c. This was the case with triparanol and at those concentrations of U18666A that decreased the reductase activity, suggesting that polar sterols may play a role in suppressing the reductase activity. In the presence of 30 microM-U18666A (sterol formation blocked) the increase produced by simultaneously added compactin could be prevented by addition of mevalonate. This indicates the existence of a non-sterol mevalonate-derived effector in addition to a sterol-dependent regulation. LDL (low-density lipoprotein), which was shown to be able to decrease the compactin-induced increase in reductase activity, could not prevent the U18666A-induced increase. On the contrary, LDL enhanced the U18666A effect, showing that the LDL regulation is not merely the result of introducing cholesterol to the cells.

2006 ◽  
Vol 84 (1) ◽  
pp. 102-111 ◽  
Author(s):  
Monica P Polo ◽  
Margarita G de Bravo

Monoterpenes have multiple pharmacological effects on the metabolism of mevalonate. Geraniol, a dietary monoterpene, has in vitro and in vivo anti-tumor activity against several cell lines. We have studied the effects of geraniol on growth, fatty-acid metabolism, and mevalonate metabolism in the human hepatocarcinoma cell line Hep G2. Up to 100 µmol geraniol/L inhibited the growth rate and 3-hydroxymethylglutaryl coenzyme A reductase (HMG-CoA) reductase activity of these cells. At the same concentrations, it increased the incorporation of cholesterol from the medium in a dose-dependent manner. Geraniol-treated cells incorporated less 14C-acetate into nonsaponifiable lipids, inhibiting its incorporation into cholesterol but not into squalene and lanosterol. This is indicative of an inhibition in cholesterol synthesis at a step between lanosterol and cholesterol, a fact confirmed when cells were incubated with 3H-mevalonate. The incorporation of 3H-mevalonate into protein was also inhibited, whereas its incorporation into fatty acid increased. An inhibition of Δ5 desaturase activity was demonstrated by the inhibition of the conversion of 14C-dihomo-γ-linolenic acid into arachidonic acid. Geraniol has multiple effects on mevalonate and lipid metabolism in Hep G2 cells, affecting cell proliferation. Although mevalonate depletion is not responsible for cellular growth, it affects cholesterogenesis, protein prenylation, and fatty-acid metabolism.Key words: geraniol, Hep G2, HMG-CoA reductase, mevalonate, fatty acids.


1984 ◽  
Vol 222 (1) ◽  
pp. 35-39 ◽  
Author(s):  
L H Cohen ◽  
M Griffioen ◽  
L Havekes ◽  
D Schouten ◽  
V van Hinsbergh ◽  
...  

Compactin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase, decreased cholesterol synthesis in intact Hep G2 cells. However, after the inhibitor was washed away, the HMG-CoA-reductase activity determined in the cell homogenate was found to be increased. Also the high-affinity association of LDL (low-density lipoprotein) to Hep G2 cells was elevated after incubation with compactin. Lipoprotein-depleted serum, present in the incubation medium, potentiated the compactin effect compared with incubation in the presence of human serum albumin. Addition of either mevalonate or LDL prevented the compactin-induced rise in activities of both HMG-CoA reductase and LDL receptor in a comparable manner. It is concluded that in this human hepatoma cell line, as in non-transformed cells, both endogenous mevalonate or mevalonate-derived products and exogenous cholesterol are able to modulate the HMG-CoA reductase activity as well as the LDL-receptor activity.


2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3743-3747 ◽  
Author(s):  
Hyogo Horiguchi ◽  
Fujio Kayama ◽  
Etsuko Oguma ◽  
William G. Willmore ◽  
Pavel Hradecky ◽  
...  

Abstract Both toxic exposure to cadmium and cancer therapy with cisplatin (CDDP) can induce anemia in patients owing to the insufficient production of erythropoietin (EPO). Therefore, the effects of cadmium chloride (Cd) and CDDP in the Hep3B human hepatoma cell line, which up-regulates EPO expression in response to hypoxia and cobalt (Co), were investigated. The induction of binding activity of the HIF-1 transcription factor and EPO mRNA expression and protein production were suppressed by Cd and CDDP in a dose-dependent manner with no apparent cell damage. Mercuric chloride also suppressed hypoxia- and Co-induced EPO production, mRNA expression, and HIF-1 binding in a manner similar to Cd and CDDP, whereas zinc chloride suppressed Co-induced EPO production, mRNA expression, and HIF-1 binding but did not affect hypoxia induction or that observed after simultaneous exposure to hypoxia and Co. In contrast, lead and tin salts had no effect on HIF-1 activation or EPO expression. These results indicate that Cd and CDDP have a strong and specific inhibitory effect on hypoxia- and Co-induced signaling and EPO induction in hepatic cells. It is likely that these agents cause anemia by directly impacting EPO production in the kidney.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 512-512
Author(s):  
Lan Lin ◽  
Y. Paul Goldberg ◽  
Tomas Ganz

Abstract Human genetic studies identified HJV (also called HFE2) as the major cause for juvenile hemochromatosis (JH). Patients with HJV hemochromatosis have low urinary levels of hepcidin, the principal iron-regulatory hormone secreted by the liver. We attempted to establish the specific roles of HJV in iron metabolism, especially its relationship with hepcidin. Translation of the genomic sequence indicated a C-terminal GPI anchor for the protein product of HJV, hemojuvelin. This suggested that hemojuvelin may have either a soluble or a cell-associated form. In human hepatoma cell line Hep3B, knockdown of cellular HJV by siRNA decreased hepcidin expression, independently of the IL-6 pathway. Intriguingly, the addition of recombinant soluble hemojuvelin (rs-hemojuvelin) also suppressed hepcidin expression in primary human hepatocytes, in a log-linear dose-dependent manner, suggesting competition between soluble and cell-associated forms of hemojuvelin. Soluble hemojuvelin was found in human sera at concentrations similar to those required to suppress hepcidin mRNA in vitro. In cells engineered to express hemojuvelin, soluble hemojuvelin release was progressively inhibited by increasing iron or holotransferrin concentrations. Our study suggests that soluble and cell-associated hemojuvelin reciprocally regulate hepcidin mRNA levels, and that hemojuvelin may serve as a molecular messenger for iron homeostasis. Even in hepatocytes stimulated with IL-6, we observed strong suppression of hepcidin mRNA by rs-hemojuvelin. If rs-hemojuvelin or its active fragments also suppress hepcidin production in vivo, they could be used to alleviate anemia of inflammation.


2006 ◽  
Vol 231 (3) ◽  
pp. 322-327 ◽  
Author(s):  
Eun-Sun Hwang ◽  
Hyong Joo Lee

Lycopene, which is the predominant carotenoid in tomatoes and tomato-based foods, may protect humans against various cancers. Effects of lycopene on the adhesion, invasion, migration, and growth of the SK-Hep1 human hepatoma cell line were investigated. Lycopene inhibited cell growth in dose-dependent manners, with growth inhibition rates of 5% and 40% at 0.1 μM and 50 μM lycopene, respectively, after 24 hrs of incubation. Similarly, after 48 hrs of incubation, lycopene at 5 μM and 10 μM decreased the cell numbers by 30% and 40%, respectively. Lycopene decreased the gelatinolytic activities of both matrix metalloproteinase (MMP)-2 and MMP-9, which were secreted from the SK-Hep1 cells. Incubation of SK-Hep1 cells with 110 μM of lycopene for 60 mins significantly inhibited cell adhesion to the Matrigel-coated substrate in a concentration-dependent manner. To study invasion, SK-Hep1 cells were grown either on Matrigel-coated Transwell membranes or in 24-well plates. The cells were treated sequentially for 24 hrs with lycopene before the start of the invasion assays. Cell growth and death were assessed under the same conditions. The invasion of SK-Hep1 cells treated with lycopene was significantly reduced to 28.3% and 61.9% of the control levels at 5 μM and 10 μM lycopene, respectively (P < 0.05). In the migration assay, lycopene-treated cells showed lower levels of migration than untreated cells. These results demonstrate the antimetastatic properties of lycopene in inhibiting the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells.


Sign in / Sign up

Export Citation Format

Share Document