scholarly journals Concanavalin A binding to human erythrocytes leads to alterations in properties of the membrane skeleton

1987 ◽  
Vol 241 (2) ◽  
pp. 521-525 ◽  
Author(s):  
S M Gokhale ◽  
N G Mehta

Three properties related to the erythrocyte membrane skeleton are found to be altered after the binding of concanavalin A (Con A) to erythrocytes or their isolated membranes. Con A binding to normal erythrocytes imparts resistance to heat (49 degrees C)-induced fragmentation of the cells. The fragmentation, due to denaturation of spectrin at 49 degrees C, is prevented by Con A in a dose-dependent manner, but levels off at concentrations of Con A in excess of 100 micrograms/ml. The binding of Con A to ghosts isolated from normal, trypsin- or Pronase-treated cells prevents (completely or substantially) the elution of the skeletal protein complex when the membranes are extracted under low-ionic-strength conditions in the cold. The Con A-agglutinated membranes of trypsin- and Pronase-treated, but not normal, cells show cross-linking of skeletal proteins and band 3 with dimethyl adipimidate, a 0.86 nm (8.6 A)-span bifunctional reagent. The extent of cross-linking is greater in the Pronase-treated membrane than in the less-agglutinable trypsin-treated membranes. The results show that, after Con A has bound, rearrangements occur in the membrane that alter properties of the skeletal proteins. Additionally, redistribution of the skeletal proteins and the Con A receptor occurs in the lectin-agglutinated membranes.

2018 ◽  
Vol 13 (6) ◽  
pp. 1934578X1801300
Author(s):  
Yuting Shao ◽  
Yan Zhao ◽  
Hong Zhang ◽  
Mengjun Jiang ◽  
Afsar Khan ◽  
...  

Phytochemical investigation of the ethyl acetate soluble fraction from the leaves of Epigynum cochinchinensis led to the isolation of one new C21 pregnane glycoside, epigycoside C (1), along with two known analogues epigycoside A (2) and epigynoside G (3). Their structures were elucidated on the basis of extensive spectroscopic techniques. The in vitro immunosuppressive activity of compound 1 was evaluated against concanavalin A (Con A)- and lipopolysaccharides (LPS)-stimulated proliferation of mice splenocytes. Compound 1 displayed significant immunosuppressive activities in a dose-dependent manner.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1087 ◽  
Author(s):  
Jian Yang ◽  
Bin Wang ◽  
Chao-feng Zhang ◽  
Xiang-hong Xu ◽  
Mian Zhang

Cynatratoside A (CyA) is a C21 Steroidal glycoside with pregnane skeleton isolated from the root of Cynanchum atratum Bunge (Asclepiadaceae). This study aimed to investigate the effects of CyA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) and the underlying mechanism. CyA was orally administered to mice at 10 and 40 mg/kg 8 h before and 1 h after Con A treatment. The effects of CyA on Con A-induced spleen and liver in mice were assessed via histopathological changes, T lymphocyte amounts and the expressions of IL-1β and ICAM-1. Con A-induced L-02 hepatocytes were used to evaluate whether CyA (0.1–10 μM) can directly protect hepatocytes from cytotoxicity and the possible mechanism. The results revealed that CyA treatment could significantly improve the histopathological changes of spleen and liver, reduce the proliferation of splenic T lymphocytes, and decrease the expressions of IL-1β and ICAM-1 in liver. The experiment in vitro showed that CyA inhibited Con A-induced hepatotoxicity in a concentration-dependent manner. CyA (10 μM) significantly increased/decreased the expression of Bcl-2/Bax and reduced the levels of cleaved caspases-9 and -3. Our study demonstrated for the first time that CyA has a significant protective effect on Con A-induced AIH by inhibiting the activation and adhesion of T lymphocytes and blocking hepatocyte apoptosis.


2021 ◽  
Vol 99 (2) ◽  
pp. 231-240
Author(s):  
Guangwei Liu ◽  
Wenxia Zhao ◽  
Jiameng Bai ◽  
Jianjiao Cui ◽  
Haowei Liang ◽  
...  

Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease that seriously threatens the health of humans globally. Formononetin (FMN) is a natural herb extract with multiple biological functions. In this study, an experimental model of AIH was established in mice through the use of concanavalin A (ConA). To investigate the effects of FMN on ConA-induced hepatitis, the mice were pretreated with 50 or 100 mg/kg body mass of FMN. The results show that FMN alleviated ConA-induced liver injury of mice in a dose-dependent manner. Moreover, pretreatment with FMN inhibited the apoptosis of hepatocytes in the ConA-treated mice through downregulating the expression of pro-apoptotic proteins (Bax, cleaved caspase 9, and cleaved caspase 3) and upregulating the expression of anti-apoptotic protein (Bcl-2). It was also found that the levels of proinflammatory cytokines were greatly reduced in the serum and liver tissues of mice pretreated with FMN. Further studies showed that FMN reduced the level of phosphorylated nuclear factor kappa B (p-NF-κB) p65 and enhanced the level of IκBα (inhibitor of NF-κB), suggesting that FMN inhibits the activation of the NF-κB signaling pathway. In addition, FMN inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome. Therefore, FMN could be a promising agent for the treatment of AIH.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3570-3570
Author(s):  
Hiroaki Minami ◽  
Keiji Nogami ◽  
Koji Yada ◽  
Midori Shima

Abstract Factor VIII is activated by cleavage at Arg372, Arg740, and Arg1689 by thrombin. Activated factor VIII (VIIIa) forms the tenase complex and markedly amplifies the activation of factor X as a cofactor of factor IX. We had demonstrated that thrombin interacts with factor VIII through the residues 392-394 and 484-509 in the A2 domain and the C2 domain, and each association regulates cleavage at Arg740, Arg372, and Arg1689, respectively (Nogami K, JBC 2000, 2005; BJH 2008). The A2 residues 484-509 partially contribute to cleavage at Arg372 by thrombin, however, the major thrombin binding-site(s) regulating cleavage at Arg372 is unclear. Thrombin recognizes macromolecular substrates and cofactors through either or both of two anion-binding exosite I and II (ABE-I and -II), which are characterized by a high density of solvent-exposed basic residues. ABE-I binds to fibrinogen and hirudin (residues 54-65), whilst ABE-II is primarily characterized as the heparin-binding exosite. The A1 domain of factor VIII also binds to thrombin through the ABE-I (Nogami K. JBC 2005). In this study, we attempted to identify the thrombin-binding region on A1, and focused on the A1 residues 340-350, involving the clustered acidic residues and similar sequences of hirudin (residues 54-65). A synthetic peptide corresponding to the A1 residues 340-350 with sulfated Tyr346 (340-350-S(+)) was prepared to investigate factor VIII interaction with thrombin. Activation of factor VIII (100 nM) by thrombin (0.4 nM) with various concentrations of peptide was evaluated by measurement of factor VIIIa activity in a one-stage clotting assay. A 340-350-S(+) peptide showed a dose-dependent inhibition (by ∼60%) of thrombin-catalyzed activation, and the IC50 was 75 µM. A non-sulfated peptide also showed a modest inhibition by ∼40% (IC50 >400 µM), however. An experiment using thrombin substrate S-2238 demonstrated that P340-350-S(+) did not affect the thrombin activity. The effect of 340-350-S(+) peptide on the thrombin-catalyzed cleavage of heavy chain was further examined by SDS-PAGE/western blotting.The peptide significantly blocked the cleavage at Arg372 in a timed- and dose-dependent manner (IC50; 150 µM), whilst of interest the cleavage at Arg740 was little affected. A non-sulfated peptide also delayed the cleavage at Arg372, with a modest fast cleavage compared to sulfated one. The peptide did not inhibit factor FXa-catalyzed reaction to factor VIII. Direct binding of 340-350-S(+) peptide to thrombin was examined by a surface resonance plasmon (SPR)-based assay and by the zero-length cross-linking reagent EDC. In SPR-based solid phase assay, thrombin bound to immobilized 340-350-S(+) peptide with high affinity (Kd; 1.13 nM). EDC cross-linking fluid phase assay similarly revealed that formation of EDC cross-linking product between the biotinylated 337-350-S(+) peptide and thrombin were observed, and this cross-linking was completely inhibited by non-labeled 340-350-S(+) peptide (IC50; 1.0 µM). Taken together, we demonstrated that the A1 residues 340-350 (NEEAED(sY)DDDL) involving sulfated Tyr346 contained the thrombin binding-site responsible for the proteolytic cleavage at Arg372 in factor VIII. Disclosures: No relevant conflicts of interest to declare.


1974 ◽  
Vol 62 (2) ◽  
pp. 351-365 ◽  
Author(s):  
Graeme B. Ryan ◽  
Joan Z. Borysenko ◽  
Morris J. Karnovsky

Human neutrophil polymorphonuclear leukocytes (PMN) were studied to determine the influence of cellular locomotion upon the redistribution and capping of concanavalin A (Con A). Con A was detected by fluorescence (using Con A conjugated to fluorescein isothiocyanate [Con A-FITC]), or on shadow-cast replicas (using Busycon canaliculatum hemocyanin as a marker for Con A). After labeling with Con A 100 µg/ml at 4°C and warming to 37°C, locomotion occurred, and the Con A quickly aggregated into a cap at the trailing end of the cell. When locomotion was inhibited (with cytochalasin B, or by incubation in serum-free medium at 18°C) Con A rapidly formed a cap over the central region of the cell. Iodoacetamide inhibited capping. PMN labeled with FITC, a monovalent ligand, developed caps at the tail only on motile cells; FITC remained dispersed on immobilized cells. PMN exposed to Con A 100 µg/ml at 37°C bound more lectin than at 4°C, became immobilized, and showed slow central capping. The Con A soon became internalized to form a perinuclear ring. Such treatment in the presence of cytochalasin B resulted in the quick formation of persistent central caps. Colchicine (or prior cooling) protected PMN from the immobilizing effect of Con A, and tail caps were found on 30–40% of cells. Immobilization of colchicine-treated cells caused Con A to remain in dispersed clusters. Thus, capping on PMN is a temperature- and energy-dependent process that proceeds independently of cellular locomotion, provided a colchicine-sensitive system is intact and the ligand is capable of cross linking receptors. On the other hand, if the cell does move, it appears that ligands may be swept into a cap at the tail whether cross-linking occurs or not.


1976 ◽  
Vol 22 (3) ◽  
pp. 623-632
Author(s):  
G.E. Wise

The fate of concanavalin A (Con A) bound to normal and enucleated L cells was followed at the ultrastructural level over a 20-h period. In both enucleates and normal cells the Con A is seen to be distributed in a uniform manner over the entire cell surface following a 30-min pulse with a low concentration of Con A. In the subsequent chase period the cells then aggregate the Con A and Con A sites into large clusters on the cell membrane. The cells then phagocytoze the Con A and large phagocytic vacuoles containing it are observed. Thus, enucleated cells are capable of phagocytozing Con A and its sites in the same manner as normal cells.


1982 ◽  
Vol 92 (2) ◽  
pp. 565-573 ◽  
Author(s):  
R G Painter ◽  
M Ginsberg

We have measured the association of platelet surface membrane proteins with Triton X-100 (Triton)-insoluble residues in platelets surface labeled with 125I. In both concanavalin A (Con A)-stimulated and resting platelets, this fraction is composed largely of polypeptides with apparent molecular weights of 45,000, 200,000, and 250,000 which comigrate with authentic actin, myosin heavy chain, and actin binding protein, respectively, as judged by PAGE in SDS. Less than 10% of the two major 125I-labeled surface glycoproteins, GPiib and GPIII, were associated with the Triton residue in resting platelets. Within 45 s after Con A addition, 80-95% of these two glycoproteins became associated with the Triton residue and the amount of sedimentable actin doubled. No cosedimentation of GPIIb and III with the cytoskeletal protein-containing Triton residue was seen when Con A was added to a Triton extract of resting cells, indicating that the sedimentation of GPIIb and III seen in Con A-stimulated platelets was not due to precipitation of the glycoproteins by Con A after detergent lysis. Treatment of Triton extracts of Con A-stimulated platelets with DNase I (deoxyribonucleate 5'-oligonucleotidido-hydrolase [EC 3.1.4.5]) inhibited the sedimentation of actin and the two surface glycoproteins in a dose-dependent manner. This inhibition of cosedimentation was not due to an effect of DNase I on Con A-glycoprotein interactions since these two glycoproteins could be quantitatively recovered by Con A-Sepharose affinity absorption in the presence of DNase I. When the Con A bound to the Triton residue was localized ultrastructurally, it was associated with cell-sized structures containing filamentous material. In intact cells, there was simultaneous immunofluorescent coredistribution of surface-bound Con A and myosin under conditions which induced a redistribution of platelet myosin. These data suggest that Con A can, in the intact platelet, induce physical interactions between certain surface glycoproteins and the internal cytoskeleton.


2008 ◽  
Vol 100 (6) ◽  
pp. 1183-1191 ◽  
Author(s):  
Blazej Rubis ◽  
Anna Paszel ◽  
Mariusz Kaczmarek ◽  
Magdalena Rudzinska ◽  
Henryk Jelen ◽  
...  

So far, a protective influence of phytosterols on the human organism and atherogenesis has been suggested. Most studies have concentrated on the cytotoxic efficacy of phytosterols on cancer cells. However, there are only a few reports showing their influence on normal cells. The aim of the present study was to determine whether dietary plant sterols and their thermal processing products could influence the viability of normal, abdominal endothelial cells that play a crucial role in atherogenesis. Thus, we studied the effect of rapeseed oil-extract components, β-sitosterol, cholesterol and their epoxy-derivatives, 5α,6α-epoxy-β-sitosterol and 5α,6α-epoxycholesterol, on the proliferation and viability of human abdominal aorta endothelial cells HAAE-2 in vitro. We showed strong cytotoxic properties of β-sitosterol in HAAE-2 cells (half maximal inhibitory concentration (IC50) = 1·99 (sem 0·56) μm) and, interestingly, a weaker cytotoxic effect of 5α,6α-epoxy-β-sitosterol (IC50>200 μm). Moreover, we observed a significantly stronger cytotoxic activity of β-sitosterol than cholesterol (IC50 = 8·99 (sem 2·74) μm). We also revealed that β-sitosterol as well as cholesterol caused apoptosis, inducing caspase-3 activity in the cells (60 % increase compared with control cells) that corresponded to the DNA fragmentation analysis in a terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) study. Although absorption of plant sterols is low compared with cholesterol, they can still influence other physiological functions. Since they effectively reduce serum LDL-cholesterol and atherosclerotic risk but also decrease the viability of cancer cells as well as normal cells in a time- and dose-dependent manner in vitro, their influence on other metabolic processes remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document