scholarly journals Vitamin K-dependent protein S is similar to rat androgen-binding protein

1987 ◽  
Vol 243 (1) ◽  
pp. 293-296 ◽  
Author(s):  
M E Baker ◽  
F S French ◽  
D R Joseph

Vitamin K-dependent protein S belongs to the family of clotting factors (e.g. Factors IX and X, and protein C). Unlike the other clotting factors, the C-terminal half (residues 250-634) of protein S is not a serine proteinase. In fact, the function of residues 250-634 of protein S is unknown. By using computer programs designed to detect evolutionary relationships between proteins, we find that this part of protein S is similar to rat androgen-binding protein, a protein produced and secreted by testicular Sertoli cells. The homology between protein S and androgen-binding protein suggests new approaches for elucidating their functions.

1983 ◽  
Vol 209 (3) ◽  
pp. 837-846 ◽  
Author(s):  
B Dahlbäck

Vitamin K-dependent protein S exists in two forms in human plasma, namely as the free protein and in complex with C4b-binding protein [Dahlbäck & Stenflo (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2512-2516]. Now reported is a simple purification procedure for human protein S that includes barium citrate adsorption, DEAE-Sephacel chromatography and chromatography on Blue Sepharose. The yield was approx. 30% relative to the concentration of free protein S in plasma, which was found to be approx. 10 mg/l. Purified protein S migrated as a single-chain band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under non-reducing conditions and as a doublet of Mr approx. 85 000 and 75 000 on reduction. A third band of Mr 16 000 was observed after electrophoresis of 125I-labelled protein S and radioautography of reduced samples. This band appears to be disulphide-linked to the 75 000-Mr chain before reduction. Thrombin converted the 85 000-Mr chain of protein S into a 75 000-Mr chain and an 8000-Mr fragment, the latter again being detectable only by radioautography of reduced samples. The 16 000-Mr fragment was not observed, suggesting its degradation by thrombin. Under non-reducing conditions, no change in apparent molecular weight of thrombin-treated protein S was observed, indicating disulphide linkage of the fragments. Thrombin also affected the mobility of protein S on agarose-gel electrophoresis in the presence of Ca2+, suggesting a decreased affinity to Ca2+ of the cleaved form of protein S as compared with the undegraded molecule. After activation of the complement system in human serum, protein S was found to be a constituent part of the complex formed by C4b-binding protein and component C4b.


1983 ◽  
Vol 209 (3) ◽  
pp. 847-856 ◽  
Author(s):  
B Dahlbäck

C4b-binding protein was purified from human plasma in high yield by a simple procedure involving barium citrate adsorption and two subsequent chromatographic steps. Approx. 80% of plasma C4b-binding protein was adsorbed on the barium citrate, presumably because of its complex-formation with vitamin K-dependent protein S. The purified C4b-binding protein had a molecular weight of 570 000, as determined by ultracentrifugation, and was composed of about eight subunits (Mr approx. 70 000). Uncomplexed plasma C4b-binding protein was purified from the supernatant after barium citrate adsorption. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in non-reducing conditions and on agarose-gel electrophoresis it appeared as a doublet, indicating two forms differing slightly from each other in molecular weight and net charge. The protein band with the higher molecular weight in the doublet corresponded to the C4b-binding protein purified from the barium citrate eluate. Complex-formation between protein S and C4b-binding protein was studied in plasma, and in a system with purified components, by an agarose-gel electrophoresis technique. Protein S was found to form a 1:1 complex with the higher-molecular-weight form of C4b-binding protein, whereas the lower-molecular-weight form of C4b-binding protein did not bind protein S. The KD for the C4b-binding protein-protein S interaction in a system with purified components was approx. 0.9×10(-7) M. Rates of association and dissociation at 37 degrees C were low, namely about 1×10(3) M-1 . S-1 and 1.8×10(-4)-4.5×10(-4) S-1 respectively. In human plasma free protein S and free higher-molecular-weight C4b-binding protein were in equilibrium with the C4b-binding protein-protein S complex. Approx. 40% of both proteins existed as free proteins. From equilibrium data in plasma a KD of about 0.7×10(-7) M was calculated for the C4b-binding protein-protein S interaction.


Sign in / Sign up

Export Citation Format

Share Document