scholarly journals The interaction in vivo of transferrin and asialotransferrin with liver cells

1987 ◽  
Vol 243 (3) ◽  
pp. 715-722 ◽  
Author(s):  
T J C van Berkel ◽  
C J Dekker ◽  
J K Kruijt ◽  
H G van Eijk

Rat transferrin or asialotransferrin doubly radiolabelled with 59Fe and 125I was injected into rats. A determination of extrahepatic and hepatic uptake indicated that asialotransferrin delivers a higher fraction of the injected 59Fe to the liver than does transferrin. In order to determine in vivo the intrahepatic recognition sites for transferrin and asialotransferrin, the liver was subfractionated into parenchymal, endothelial and Kupffer cells by a low-temperature cell isolation procedure. High-affinity recognition of transferrin (competed for by an excess of unlabelled transferrin) is exerted by parenchymal cells as well as endothelial and Kupffer cells with a 10-fold higher association (expressed per mg of cell protein) to the latter cell types. In all three cell types iron delivery occurs, as concluded from the increase in cellular 59Fe/125I ratio at prolonged circulation times of transferrin. It can be calculated that parenchymal cells are responsible for 50-60% of the interaction of transferrin with the liver, 20-30% is associated with endothelial cells and about 20% with Kupffer cells. For asialotransferrin a higher fraction of the injected dose becomes associated with parenchymal cells as well as with endothelial and Kupffer cells. Competition experiments in vivo with various sugars indicated that the increased interaction of asialotransferrin with parenchymal cells is specifically inhibited by N-acetylgalactosamine whereas mannan specifically inhibits the increased interaction of asialotransferrin with endothelial and Kupffer cells. Recognition of asialotransferrin by galactose receptors from parenchymal cells or mannose receptors from endothelial and Kupffer cells is coupled to active 59Fe delivery to the cells. It is concluded that, as well as parenchymal cells, liver endothelial and Kupffer cells are also quantitatively important intrahepatic sites for transferrin and asialotransferrin metabolism, an interaction exerted by multiple recognition sites on the various cell types.

1982 ◽  
Vol 208 (1) ◽  
pp. 61-67 ◽  
Author(s):  
M K Bijsterbosch ◽  
A M Duursma ◽  
J M W Bouma ◽  
M Gruber

1. The plasma clearance of intravenously injected 125I-labelled mitochondrial malate dehydrogenase (half-life 7 min) was not influenced by previous injection of suramin and/or leupeptin (inhibitors of intralysosomal proteolysis). 2. Pretreatment with both inhibitors considerably delayed degradation of endocytosed enzyme in liver, spleen, bone marrow and kidneys. 3. The tissue distribution of radioactivity was determined at 30 min after injection, when only 3% of the dose was left in plasma. All injected radioactivity was still present in the carcass. The major part of the injected dose was found in liver (49%), spleen (5%), kidneys (13%) and bone, including marrow (11%). 4. Liver cells were isolated 15 min after injection of labelled enzyme. We found that Kupffer cells and parenchymal cells had endocytosed the enzyme at rates corresponding to 9530 and 156 ml of plasma/day per g of cell protein respectively. Endothelial cells do not significantly contribute to uptake of the enzyme. 5. Uptake by Kupffer cells was saturable, whereas uptake by parenchymal cells was not. This suggests that these cell types endocytose the enzyme via different receptors. 6. Previous injection of carbon particles greatly decreased uptake of the enzyme by liver, spleen and bone marrow.


1993 ◽  
Vol 291 (3) ◽  
pp. 749-755 ◽  
Author(s):  
S Magnússon ◽  
T Berg

Upon intravenous injection into rats, the plant toxin ricin was rapidly cleared from the circulation by the liver. Among the different liver cell populations, most of the injected ricin associated with the sinusoidal endothelial cells (EC), whereas the liver parenchymal cells (PC) and Kupffer cells (KC) yielded minor contributions to the total liver uptake in vivo. Co-injection of mannan strongly inhibited ricin uptake by the EC, showing that it was mediated by mannose receptors. On the other hand, co-injection of lactose, which inhibits the galactose-specific association of ricin with cells, enhanced ricin uptake by the EC. The carbohydrate-dependency of the EC contribution to the uptake of ricin in vivo was reflected in the carbohydrate-dependency of the uptake in vivo by whole liver. In vitro, the EC also endocytosed ricin more efficiently than did the PC or KC. Whereas uptake in vitro in the EC was mainly mannose-specific, uptake in the two other cell types was mainly galactose-specific. Western blotting showed that the mannose receptors of liver non-parenchymal cells are identical with the mannose receptor previously isolated from alveolar macrophages. The mannose receptors are expressed at a higher level in EC than in KC. Ligand blotting showed that, in the presence of lactose, the mannose receptor is the only protein in the EC that binds ricin, and the binding is mannose-specific and Ca(2+)-dependent.


1990 ◽  
Vol 270 (1) ◽  
pp. 233-239 ◽  
Author(s):  
M K Bijsterbosch ◽  
T J C Van Berkel

The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.


1982 ◽  
Vol 202 (3) ◽  
pp. 655-660 ◽  
Author(s):  
A S H De Jong ◽  
A M Duursma ◽  
J M W Bouma ◽  
M Gruber ◽  
A Brouwer ◽  
...  

1. Pig lactate dehydrogenase isoenzyme M4 was labelled with O-(4-diazo-3,5-di[125I]iodobenzoyl)sucrose and injected intravenously into rats. Previous work has shown that this label does not influence the clearance of the enzyme (half-life about 26 min) and that it is retained within the lysosomes for several hours after endocytosis and breakdown of the protein [De Jong, Bouma & Gruber (1981) Biochem. J. 198, 45-51]. 2. The distribution of the radioactivity over a large number of tissues was determined 2 h after injection. A high percentage of the injected dose was found in liver (41%), spleen (10%) and bone including marrow (21%). 3. Autoradiography indicated uptake of the enzyme mainly by Kupffer cells of the liver, by spleen macrophages and by bone marrow macrophages. 4. Liver cells were isolated 1 h after injection of the enzyme. Kupffer cells, endothelial cells and parenchymal cells were found to endocytose the enzyme at rates corresponding to 4230, 35 and 25 ml of plasma/day per g of cell protein, respectively. 5. Previous injection of carbon particles greatly reduced the uptake of the enzyme by liver and spleen, but the uptake by bone marrow was not significantly changed.


1991 ◽  
Vol 276 (1) ◽  
pp. 135-140 ◽  
Author(s):  
J A A M Kamps ◽  
J K Kruijt ◽  
J Kuiper ◽  
T J C Van Berkel

The association with and degradation by cultured human parenchymal liver cells and human Kupffer cells of human low-density lipoprotein (LDL) was investigated in order to define, for the human situation, the relative abilities of the various liver cell types to interact with LDL. With both human parenchymal liver cells and Kupffer cells the association of LDL with the cells followed saturation kinetics which were coupled to LDL degradation. The association of LDL (per mg of cell protein) to both cell types was comparable, but the association with human Kupffer cells was much more efficiently coupled to degradation than was the case in parenchymal cells. The capacity of human Kupffer cells to degrade LDL was consequently 18-fold higher (per mg of cell protein) than that of the human parenchymal liver cells. Competition studies showed that unlabelled LDL competed efficiently with the cell association and degradation of 125I-labelled LDL with both parenchymal and Kupffer cells, while unlabelled acetyl-LDL was ineffective. The degradation of LDL by parenchymal and Kupffer cells was blocked by chloroquine and NH4Cl, indicating that it occurs in the lysosomes. Binding and degradation of LDL by human liver parenchymal cells and human Kupffer cells appeared to be completely calcium-dependent. It is concluded that the association and degradation of LDL by human Kupffer and parenchymal liver cells proceeds through the specific LDL receptor, whereas the association of LDL to Kupffer cells is more efficiently coupled to degradation. The presence of the highly active LDL receptor on human Kupffer cells might contribute significantly to LDL catabolism by human liver, especially under conditions whereby the LDL receptor on parenchymal cells is down-regulated.


1990 ◽  
Vol 36 (9) ◽  
pp. 1638-1641 ◽  
Author(s):  
S C Kazmierczak ◽  
W J Castellani ◽  
F Van Lente ◽  
E D Hodges ◽  
B Udis

Abstract We investigated the effect of reticulocytosis on the lactate dehydrogenase (LD; EC 1.1.1.27) isoenzyme LD1/LD2 ratio in patients with and without evidence of hemolytic disease. Analysis of sera from patients with reticulocytosis and in vivo hemolysis showed a mean LD1/LD2 ratio of 0.92 compared with a ratio of 0.69 in patients with in vivo hemolysis and normal reticulocyte counts. Determination of LD isoenzymes in erythrocyte lysate revealed significantly increased LD1/LD2 ratios for patients with marked reticulocytosis compared with those for patients with normal-to-minimal increases in reticulocytes. Finally, separation of mature erythrocytes and reticulocytes by flow cytometry revealed marked differences in the LD1/LD2 isoenzyme distribution between these two cell types. The ability of hemolysis to cause a "flipped" LD1/LD2 ratio is dependent on the proportion of the hemolyzed cells that are reticulocytes.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (10) ◽  
pp. 2269-2277 ◽  
Author(s):  
Mandy B. Esch ◽  
Jean-Matthieu Prot ◽  
Ying I. Wang ◽  
Paula Miller ◽  
Jose Ricardo Llamas-Vidales ◽  
...  

We have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells).


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2807-2816 ◽  
Author(s):  
BethAnn Friedman ◽  
Kris Vaddi ◽  
Constance Preston ◽  
Elizabeth Mahon ◽  
James R. Cataldo ◽  
...  

The objective of these studies was to characterize the macrophage mannose receptor binding and pharmacological properties of carbohydrate remodeled human placental-derived and recombinant β-glucocerebrosidase (pGCR and rGCR, respectively). These are similar but not identical molecules that were developed as enzyme replacement therapies for Gaucher disease. Both undergo oligosaccharide remodeling during purification to expose terminal mannose sugar residues. Competitive binding data indicated carbohydrate remodeling improved targeting to mannose receptors over native enzyme by two orders of magnitude. Mannose receptor dissociation constants (Kd) for pGCR and rGCR were each 13 nmol/L. At 37°C, 95% of the total macrophage binding was mannose receptor specific. In vivo, pGCR and rGCR were cleared from circulation by a saturable pathway. The serum half-life (t1/2) was 3 minutes when less than saturable amounts were injected intravenously (IV) into mice. Twenty minutes postdose, β-glucocerebrosidase activity increased over endogenous levels in all tissues examined. Fifty percent of the injected activity was recovered. Ninety-five percent of recovered activity was in the liver. Parenchymal cells (PC), Kupffer cells (KC), and liver endothelium cells (LEC) were responsible for 75%, 22%, and 3%, respectively, of the hepatocellular uptake of rGCR and for 76%, 11%, and 12%, respectively, of the hepatocellular uptake of pGCR. Both molecules had poor stability in LEC and relatively long terminal half-lives in PC (t1/2 = 2 days) and KC (t1/2 = 3 days).


1990 ◽  
Vol 268 (3) ◽  
pp. 685-691 ◽  
Author(s):  
H F Bakkeren ◽  
F Kuipers ◽  
R J Vonk ◽  
T J C Van Berkel

Acetylated low-density lipoprotein (acetyl-LDL), biologically labelled in the cholesterol moiety of cholesteryl oleate, was injected into control and oestrogen-treated rats. The serum clearance, the distribution among the various lipoproteins, the hepatic localization and the biliary secretion of the [3H]cholesterol moiety were determined at various times after injection. In order to monitor the intrahepatic metabolism of the cholesterol esters of acetyl-LDL in vivo, the liver was subdivided into parenchymal, endothelial and Kupffer cells by a low-temperature cell-isolation procedure. In both control and oestrogen-treated rats, acetyl-LDL is rapidly cleared from the circulation, mainly by the liver endothelial cells. Subsequently, the cholesterol esters are hydrolysed, and within 1 h after injection, about 60% of the cell- associated cholesterol is released. The [3H]cholesterol is mainly recovered in the high-density lipoprotein (HDL) range of the serum of control rats, while low levels of radioactivity are detected in serum of oestrogen-treated rats. In control rats cholesterol is transported from endothelial cells to parenchymal cells (reverse cholesterol transport), where it is converted into bile acids and secreted into bile. The data thus provide evidence that HDL can serve as acceptors for cholesterol from endothelial cells in vivo, whereby efficient delivery to the parenchymal cells and bile is assured. In oestrogen-treated rats the radioactivity from the endothelial cells is released with similar kinetics as in control rats. However, only a small percentage of radioactivity is found in the HDL fraction and an increased uptake of radioactivity in Kupffer cells is observed. The secretion of radioactivity into bile is greatly delayed in oestrogen-treated rats. It is concluded that, in the absence of extracellular lipoproteins, endothelial cells can still release cholesterol, although for efficient transport to liver parenchymal cells and bile, HDL is indispensable.


2001 ◽  
Vol 6 (4) ◽  
pp. 245-254 ◽  
Author(s):  
Anne E. Regelin ◽  
Erhard Fernholz ◽  
Harald F. Krug ◽  
Ulrich Massing

Lipofection, the transfer of genetic material into cells by means of cationic lipids, is of growing interest for in vitro and in vivo approaches. In order to identify ideal lipofection reagents in a HTS, we have developed an automated lipofection method for the transfer of reporter genes into cells and for determination of the lipofection results. The method has specifically been designed and optimized for 96-well microtiter plates and can successfully be carried out by a pipetting robot with accessory equipment. It consists of two separate parts: (1) pretransfection (preparation of liposomes, formation of lipoplexes, and lipoplex transfer to the cells) and (2) posttransfection (determination of the reporter enzyme activity and the protein content of the transfected cells). Individual steps of the lipofection method were specifically optimized—for example, lipoplex formation and incubation time as well as cell lysis, cell cultivating, and the reporter gene assay. The HTS method facilitates characterization of the transfection properties (efficiency and cytotoxicity) of large numbers of (cationic) lipids in various adherent cell types.


Sign in / Sign up

Export Citation Format

Share Document