scholarly journals High Throughput Screening Method for Identification of New Lipofection Reagents

2001 ◽  
Vol 6 (4) ◽  
pp. 245-254 ◽  
Author(s):  
Anne E. Regelin ◽  
Erhard Fernholz ◽  
Harald F. Krug ◽  
Ulrich Massing

Lipofection, the transfer of genetic material into cells by means of cationic lipids, is of growing interest for in vitro and in vivo approaches. In order to identify ideal lipofection reagents in a HTS, we have developed an automated lipofection method for the transfer of reporter genes into cells and for determination of the lipofection results. The method has specifically been designed and optimized for 96-well microtiter plates and can successfully be carried out by a pipetting robot with accessory equipment. It consists of two separate parts: (1) pretransfection (preparation of liposomes, formation of lipoplexes, and lipoplex transfer to the cells) and (2) posttransfection (determination of the reporter enzyme activity and the protein content of the transfected cells). Individual steps of the lipofection method were specifically optimized—for example, lipoplex formation and incubation time as well as cell lysis, cell cultivating, and the reporter gene assay. The HTS method facilitates characterization of the transfection properties (efficiency and cytotoxicity) of large numbers of (cationic) lipids in various adherent cell types.

2003 ◽  
Vol 2003 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Lindsay J. Stanbridge ◽  
Vincent Dussupt ◽  
Norman J. Maitland

Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.


1990 ◽  
Vol 36 (9) ◽  
pp. 1638-1641 ◽  
Author(s):  
S C Kazmierczak ◽  
W J Castellani ◽  
F Van Lente ◽  
E D Hodges ◽  
B Udis

Abstract We investigated the effect of reticulocytosis on the lactate dehydrogenase (LD; EC 1.1.1.27) isoenzyme LD1/LD2 ratio in patients with and without evidence of hemolytic disease. Analysis of sera from patients with reticulocytosis and in vivo hemolysis showed a mean LD1/LD2 ratio of 0.92 compared with a ratio of 0.69 in patients with in vivo hemolysis and normal reticulocyte counts. Determination of LD isoenzymes in erythrocyte lysate revealed significantly increased LD1/LD2 ratios for patients with marked reticulocytosis compared with those for patients with normal-to-minimal increases in reticulocytes. Finally, separation of mature erythrocytes and reticulocytes by flow cytometry revealed marked differences in the LD1/LD2 isoenzyme distribution between these two cell types. The ability of hemolysis to cause a "flipped" LD1/LD2 ratio is dependent on the proportion of the hemolyzed cells that are reticulocytes.


2020 ◽  
Author(s):  
Quan Liu ◽  
Xuxu Yu ◽  
Minjie Yang ◽  
Xiangke Li ◽  
Xuejia Zhai ◽  
...  

Abstract Abstract Background Hepatocellular carcinoma (HCC) is one of the cancers of highest incidence and mortality worldwide. The proliferation and invasion of tumor cells are the main reason for poor prognosis after HCC surgery. Long non-coding RNA (lncRNA) has been shown to play a key role in the progression of HCC. LncRNA-CR594175 is one of the highly expressed lncRNAs in HCC tumors and their metastatic tumors that we have obtained by the High-throughput screening method.Methods To elucidate the role of lncRNA-CR594175 in regulating the proliferation and invasion of human hepatoma cell line, HepG2, we operated through lncRNA-CR594175 silencing to inhibit the progression of HCC, either through in vitro or in vivo experiments.Results We found that lncRNA-CR594175 was lower in adjacent non-cancerous tissues than in primary HCC, and was lower in primary HCC than in its metastasis. Silencing of lncRNA-CR594175 inhibited the proliferation and invasion of HepG2 cells and growth of subcutaneous tumors. The results revealed that lncRNA-CR594175, as a RNA sponge, broke the negative regulation of hsa-miR-142-3p on Catenin, beta-1 (CTNNB1), and once lncRNA-CR594175 was silenced, the hsa-miR142-3p regained its negative regulation on CTNNB1 which can promote HCC progression by activating the wnt pathway. Conclusions Our present study demonstrated for the first time that lncRNA-CR594175 silencing suppressed proliferation and invasion of HCC cells in vivo and in vitro by restoring the negative regulation of hsa-miR-142-3p on CTNNB1, laying a solid theoretical base for using lncRNA-CR594175 as genetic target therapy for HCC and offering a reasonable explanation for inactivation of miRNA in different tumors or in the tumor at different stages.


2021 ◽  
Author(s):  
Taeyoon Kyung ◽  
Khloe S Gordon ◽  
Caleb R Perez ◽  
Patrick V Holec ◽  
Azucena Ramos ◽  
...  

CD19-targeted CAR therapies have successfully treated B cell leukemias and lymphomas, but many responders later relapse or experience toxicities. CAR intracellular domains (ICDs) are key to converting antigen recognition into anti-tumor effector functions. Despite the many possible immune signaling domain combinations that could be included in CARs, almost all CARs currently rely upon CD3𝛇, CD28, and/or 4-1BB signaling. To explore the signaling potential of CAR ICDs, we generated a library of 700,000 CD19 CAR molecules with diverse signaling domains and developed a high throughput screening platform to enable optimization of CAR signaling for anti-tumor functions. Our strategy identifies CARs with novel signaling domain combinations that elicit distinct T cell behaviors from a clinically available CAR, including enhanced proliferation and persistence, lower exhaustion, potent cytotoxicity in an in vitro tumor rechallenge condition, and comparable tumor control in vivo. This approach is readily adaptable to numerous disease models, cell types, and selection conditions, making it a promising tool for rapidly improving adoptive cell therapies and expanding their utility to new disease indications.


2020 ◽  
Author(s):  
Brian Jurgielewicz ◽  
Yao Yao ◽  
Steven L. Stice

Abstract Background : Extracellular vesicles (EVs) are nanosized vesicles naturally secreted from cells responsible for intercellular communication and delivery of proteins, lipids, and other genetic material. Ultimately, EVs could provide innate therapeutic contents and loaded therapeutic payloads such as small molecules and gene therapy vectors to recipient cells. However, comparative kinetic measures that can be used to quantify and ultimately optimize delivery and uptake of EV payloads are lacking. We investigated both dose and time effects on EV uptake and evaluated the potential specificity of EV uptake to better understand the kinetics and uptake of human embryonic kidney (HEK293T) derived EVs. Results : Utilizing an imaging flow cytometry platform (IFC), HEK293T EV uptake was analyzed. HEK293T EV uptake was dose and time dependent with a minimum threshold dose of 6,000 EVs per cell at 4 hours of co-culture. HEK293T EV uptake was inhibited when co-cultured with recipient cells at 4°C or with pre-fixed recipient cells. By co-culturing HEK293T EVs with cell lines from various germ layers, HEK293T EVs were taken up at higher quantities by HEK293T cells. Lastly, human neural stem cells (hNSCs) internalized significantly more HEK293T EVs relative to mature neurons. Conclusions : Imaging flow cytometry is a quantitative, high throughput, and versatile platform to quantify the kinetics of EV uptake. Utilizing this platform, dose and time variables have been implicated to affect EV uptake measurements making standardization of in vitro and in vivo assays vital for the translation of EVs into the clinic. In this study, we quantified the selectivity of EV uptake between a variety of cell types in vitro and found that EVs were internalized at higher quantities by cells of the same origin. The characterization of HEK293T EV uptake in vitro, notably specificity, dose response, and kinetic assays should be used to help inform and develop EV based therapeutics.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Dwaipayan Mukherjee ◽  
Steven G. Royce ◽  
Srijata Sarkar ◽  
Andrew Thorley ◽  
Stephan Schwander ◽  
...  

Engineered nanoparticles (NPs) have been widely demonstrated to induce toxic effects to various cell types.In vitrocell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systemsin vitro, to develop a mechanistic mathematical model that can support analysis and prediction ofin vivoeffects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized usingin vitromeasurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includesin vitrocellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based onin vitromeasurements, and provides a “stepping stone” for the development of more advancedin vivomodels that will incorporate additional cellular and NP interactions.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Quan Liu ◽  
Xuxu Yu ◽  
Minjie Yang ◽  
Xiangke Li ◽  
Xuejia Zhai ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the cancers of highest incidence and mortality worldwide. The proliferation and invasion of tumor cells are the main reason for poor prognosis after HCC surgery. Long non-coding RNA (lncRNA) has been shown to play a key role in the progression of HCC. LncRNA-CR594175 is one of the highly expressed lncRNAs in HCC tumors and their metastatic tumors that we have obtained by the High-throughput screening method. Methods To elucidate the role of lncRNA-CR594175 in regulating the proliferation and invasion of human hepatoma cell line, HepG2, we operated through lncRNA-CR594175 silencing to inhibit the progression of HCC, either through in vitro or in vivo experiments. Results We found that lncRNA-CR594175 was lower in adjacent non-cancerous tissues than in primary HCC, and was lower in primary HCC than in its metastasis. Silencing of lncRNA-CR594175 inhibited the proliferation and invasion of HepG2 cells and growth of subcutaneous tumors. The results revealed that lncRNA-CR594175, as a RNA sponge, broke the negative regulation of hsa-miR-142-3p on Catenin, beta-1 (CTNNB1), and once lncRNA-CR594175 was silenced, the hsa-miR142-3p regained its negative regulation on CTNNB1 which can promote HCC progression by activating the wnt pathway. Conclusions Our present study demonstrated for the first time that lncRNA-CR594175 silencing suppressed proliferation and invasion of HCC cells in vivo and in vitro by restoring the negative regulation of hsa-miR-142-3p on CTNNB1, laying a solid theoretical base for using lncRNA-CR594175 as genetic target therapy for HCC and offering a reasonable explanation for inactivation of miRNA in different tumors or in the tumor at different stages.


Author(s):  
Xiaojing Wen ◽  
Li Zhang ◽  
Shan Zhao ◽  
Qiang Liu ◽  
Wenyi Guan ◽  
...  

Human adenovirus infections can develop into diffuse multi-organ diseases in young children and immunocompromised patients, and severe cases can lead to death. However, there are no approved antiviral drugs available to treat adenovirus diseases. In this study, a chemiluminescence-based, high-throughput screening (HTS) assay was developed and applied to screen human adenovirus 5(HAdV5)inhibitors from 1,813 approved drug library and 556 traditional Chinese medicine-sourced small-molecule compounds. We identified three compounds with in vitro anti-HAdV5 activities in the low-micromolar range (EC50 values 0.3-4.5 μM, selectivity index values 20-300) that also showed inhibitory effects on HAdV3. Cardamomin (CDM) had good anti-HAdV5 activity in vitro. Furthermore, three dilutions of CDM (150, 75, and 37.5 mg/kg/d) administered to BALB/c mouse models inhibited HAdV5-fluc infection at 1 day post-infection by 80% (p < 0.05), 76% (p < 0.05), and 58% (p < 0.05), respectively. HE-staining of pathological tissue sections of mice infected with a wildtype adenoviral strain showed that CDM had a protective effect on tissues, especially in the liver, and greatly inhibited virus-induced necrosis of liver tissue. Thus, CDM inhibits adenovirus replication in vivo and in vitro. This study established a high-throughput screening method for anti-HAdV5 drugs and demonstrated CDM to be a candidate for HAdV5 therapy, potentially providing a new treatment for patients infected with adenoviruses.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Tamer M Mohamed ◽  
Nicole Stone ◽  
Emily Berry ◽  
Haixia Wang ◽  
Sheng Ding ◽  
...  

The ability to directly trans-differentiate fibroblasts into cardiomyocytes through overexpression of three core transcription factors, Gata4, Mef2C &TBX5 (GMT), has been demonstrated by our group and others. Direct cardiac reprogramming has great potential to treat heart failure. However, clinical application remains limited due to inefficiencies in the reprogramming process and immaturity of the differentiated cardiomyocytes. In the current work, using a chemical approach we aim to increase the efficiency and the maturation of these directly reprogrammed cardiomyocytes. We have optimized a high-throughput screening method in 384-well plates using an alpha-MHC-GFP reporter to detect cardiac reprogramming in mouse cardiac fibroblasts. We screened 5500 compounds and identified 20 hits which have increased the reprogramming efficiency by 2-6 fold compared to controls. Among these top hits, 4 TGF-β inhibitors (DS 1-4) and 4 WNT inhibitors (DS 5-8) enhanced direct cardiac reprogramming. Further in depth investigations showed that the combination of the TGF-β inhibitor DS1 and the WNT inhibitor DS5 increased reprogramming efficiency 7 fold when added to the GMT-overexpressing fibroblasts on the first day of reprogramming. This combination of small molecules also enhanced the maturation of the reprogrammed cells, as we observed beating cells after only 1 week of reprogramming compared to 6–8 weeks without the small molecules. Activation of canonical WNT signaling or TGF-β signaling significantly abrogates the improvement in cardiac reprogramming by DS1 and DS5. These results indicate the specificity of the action of these inhibitors through the canonical WNT and TGF-β pathways. In a translational effort, we injected DS1, 2 and 5 intraperitoneally in mice for 2 weeks in combination with GMT following myocardial infarction (MI) and found a significant improvement in cardiac function as represented by an ejection fraction of 39.11% ±1.2% in the GMT + compounds group vs. 28.44% ± 3.98% in the GMT only group (p<0.05), 6 weeks after MI compared to an ejection fraction of 22.72% in the control untreated group. In conclusion, small molecules, especially the TGF-β inhibitors and WNT inhibitors, greatly enhanced direct reprogramming in vitro and in vivo.


2020 ◽  
Author(s):  
Quan Liu ◽  
Xuxu Yu ◽  
Minjie Yang ◽  
Xiangke Li ◽  
Xuejia Zhai ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the cancers of highest incidence and mortality worldwide. The proliferation and invasion of tumor cells are the main reason for poor prognosis after HCC surgery. Long non-coding RNA (lncRNA) has been shown to play a key role in the progression of HCC. LncRNA-CR594175 is one of the highly expressed lncRNAs in HCC tumors and their metastatic tumors that we have obtained by the High-throughput screening method.Methods To elucidate the role of CR594175 in regulating the proliferation and invasion of HepG2 cells, and to initially try to use a genetic engineering operation plan-CR594175 silence to inhibit the HCC progression through functional experiments in vitro and subcutaneous tumor-bearing experiments.Results We found that lncRNA-CR594175 was lower in adjacent noncancerous tissues than in primary HCC, and was lower in primary HCC than in their metastases. SilencingCR594175 inhibited the proliferation and invasion of HepG2 cells and growth of subcutaneous tumors. The mechanism research revealed that CR594175, as a RNA sponge, broke the negative regulation of hsa-miR-142-3p on CTNNB1 (Catenin, beta-1), and once CR594175 was silenced, the hsa-miR142-3p regained its negative regulation on CTNNB1 which can promote HCC progression by activating the wnt pathway. Conclusions Our present study demonstrates for the first time that CR594175 silencing suppressed proliferation and invasion of HCC cells in vivo and in vitro by restoring the negative regulation of hsa-miR-142-3p on CTNNB1, laying a solid theoretic base for using lncRNA-CR594175 as genetic target therapy for HCC and offering a reasonable explanation for inactivation of miRNA in different tumors or tumor at different stages.


Sign in / Sign up

Export Citation Format

Share Document