mannose receptors
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 13)

H-INDEX

29
(FIVE YEARS 2)

Cartilage ◽  
2021 ◽  
pp. 194760352110448
Author(s):  
Barbora Vesela ◽  
Martina Zapletalova ◽  
Eva Svandova ◽  
Alice Ramesova ◽  
Jaroslav Doubek ◽  
...  

Objective: The knowledge about functions of caspases, usually associated with cell death and inflammation, keeps expanding also regarding cartilage. Active caspases are present in the growth plate, and caspase inhibition in limb-derived chondroblasts altered the expression of osteogenesis-related genes. Caspase inhibitors were reported to reduce the severity of cartilage lesions in osteoarthritis (OA), and caspase-3 might represent a promising biomarker for OA prognosis. The objective of this investigation was to decipher the transcriptomic regulation of caspase inhibition in chondrogenic cells. Design: Limb-derived chondroblasts were cultured in the presence of 2 different inhibitors: Z-VAD-FMK (FMK) and Q-VD-OPH (OPH). A whole transcriptome RNA sequencing was performed as the key analysis. Results: The analysis revealed a statistically significant increase in the expression of 252 genes in the FMK samples and 163 genes in the OPH samples compared with controls. Conversely, there was a significant decrease in the expression of 290 genes in the FMK group and 188 in the OPH group. Among the top up- and downregulated genes (more than 10 times changed), almost half of them were associated with OA. Both inhibitors displayed the highest upregulation of the inflammatory chemokine Ccl5, the most downregulated gene was the one for mannose receptors Mrc1. Conclusions: The obtained datasets pointed to a significant impact of caspase inhibition on the expression of several chondro-/osteogenesis-related markers in an in vitro model of endochondral ossification. Notably, the list of these genes included some encoding for factors associated with cartilage/bone pathologies such as OA.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4797
Author(s):  
Afroditi Papasavva ◽  
Antonio Shegani ◽  
Christos Kiritsis ◽  
Ioanna Roupa ◽  
Myrto Ischyropoulou ◽  
...  

Sentinel lymph node detection (SLND) is rapidly entering common practice in the management of patients with tumors. The introduction of mannose molecules to 99mTc-labeled dextrans, so far, showed that the sentinel node could trap these agents due to their recognition by the mannose receptors of lymph node macrophages. The current study aimed to synthesize, characterize, and biologically evaluate a series of mannosylated dextran derivatives labeled with 99mTc for potential use in SLND. The compounds were designed to have a dextran with a molecular weight of 10–500 kDa as a backbone, S-derivatized cysteines, efficient SNO chelators, and mannose moieties for binding to mannose receptors. They were successfully synthesized, thoroughly characterized using NMR techniques, and labeled with the fac-[99mTc(CO)3]+ synthon. Labeling with high yields and radiochemical purities was achieved with all derivatives. In vivo biodistribution and imaging studies demonstrated high uptake in the first lymph node and low uptakes in the following node and confirmed the ability to visualize the SLN. Among the compounds studied, 99mTc-D75CM demonstrated the most attractive biological features, and in combination with the high radiochemical yield and stability of the compound, its further evaluation as a new radiopharmaceutical for sentinel lymph node detection was justified.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5764
Author(s):  
Lisa Tanzi ◽  
Marina Simona Robescu ◽  
Sara Marzatico ◽  
Teresa Recca ◽  
Yongmin Zhang ◽  
...  

Regioselective deprotection of acetylated mannose-based mono- and disaccharides differently functionalized in anomeric position was achieved by enzymatic hydrolysis. Candida rugosa lipase (CRL) and Bacillus pumilus acetyl xylan esterase (AXE) were immobilized on octyl-Sepharose and glyoxyl-agarose, respectively. The regioselectivity of the biocatalysts was affected by the sugar structure and functionalization in anomeric position. Generally, CRL was able to catalyze regioselective deprotection of acetylated monosaccharides in C6 position. When acetylated disaccharides were used as substrates, AXE exhibited a marked preference for the C2, or C6 position when C2 was involved in the glycosidic bond. By selecting the best enzyme for each substrate in terms of activity and regioselectivity, we prepared a small library of differently monohydroxylated building blocks that could be used as intermediates for the synthesis of mannosylated glycoconjugate vaccines targeting mannose receptors of antigen presenting cells.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3707
Author(s):  
Mateja Manček-Keber ◽  
Rosana Ribić ◽  
Fernando Chain ◽  
Davy Sinnaeve ◽  
José C. Martins ◽  
...  

We report the enhancement of the lipopolysaccharide-induced immune response by adamantane containing peptidoglycan fragments in vitro. The immune stimulation was detected by Il-6 (interleukine 6) and RANTES (regulated on activation, normal T cell expressed and secreted) chemokine expression using cell assays on immortalized mouse bone-marrow derived macrophages. The most active compound was a α-D-mannosyl derivative of an adamantylated tripeptide with L-chirality at the adamantyl group attachment, whereby the mannose moiety assumed to target mannose receptors expressed on macrophage cell surfaces. The immune co-stimulatory effect was also influenced by the configuration of the adamantyl center, revealing the importance of specific molecular recognition event taking place with its receptor. The immunostimulating activities of these compounds were further enhanced upon their incorporation into lipid bilayers, which is likely related to the presence of the adamantyl group that helps anchor the peptidoglycan fragment into lipid nanoparticles. We concluded that the proposed adamantane containing peptidoglycan fragments act as co-stimulatory agents and are also suitable for the preparation of lipid nanoparticle-based delivery of peptidoglycan fragments.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 863 ◽  
Author(s):  
Natalija Novak ◽  
Soheila J. Maleki ◽  
Carmen Cuadrado ◽  
Jesus F. Crespo ◽  
Beatriz Cabanillas

Ara h 2 is a relevant peanut allergen linked to severe allergic reactions. The interaction of Ara h 2 with components of the sensitization phase of food allergy (e.g., dendritic cells) has not been investigated, and could be key to understanding the allergenic potential of this allergen. In this study, we aimed to analyze such interactions and the possible mechanism involved. Ara h 2 was purified from two forms of peanut, raw and roasted, and labeled with a fluorescent dye. Human monocyte-derived dendritic cells (MDDCs) were obtained, and experiments of Ara h 2 internalization by MDDCs were carried out. The role of the mannose receptor in the internalization of Ara h 2 from raw and roasted peanuts was also investigated. Results showed that Ara h 2 internalization by MDDCs was both time and dose dependent. Mannose receptors in MDDCs had a greater implication in the internalization of Ara h 2 from roasted peanuts. However, this receptor was also important in the internalization of Ara h 2 from raw peanuts, as opposed to other allergens such as raw Ara h 3.


Cell Reports ◽  
2020 ◽  
Vol 30 (13) ◽  
pp. 4386-4398.e5 ◽  
Author(s):  
Mouna Rahabi ◽  
Godefroy Jacquemin ◽  
Mélissa Prat ◽  
Etienne Meunier ◽  
Mohamad AlaEddine ◽  
...  

2020 ◽  
Vol 16 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Tae In Wi ◽  
Yeongseon Byeon ◽  
Ji Eun Won ◽  
Jae Myeong Lee ◽  
Tae Heung Kang ◽  
...  

A key issue in dendritic cell (DC)-based cancer immunotherapy is the effective delivery of tumor-specific antigens to DCs. To deliver antigens, non-viral vaccine system has been used in ex vivo manipulation. However, ex vivo manipulation is time-consuming, lacks quality control of DCs, and demonstrates low antigen delivery efficiency, which implicates that there are serious problems in therapeutic DC preparations. Therefore, we developed mannose (MN)-labeled poly(d, l-lactide-co-glycolide) (PLGA) nanoparticles (MN-PLGA-NPs) encapsulating tumor-specific antigens for targeted delivery to mannose receptors (MN-R) on DC surfaces without ex vivo manipulation. The MN-PLGA-NPs showed DC-selective delivery in tumor-bearing mice, leading to highly mature and activated DCs, which migrated to lymphoid organs, resulting in activation of cytotoxic CD8+ T cells. Additionally, MN-PLGA-NPs showed significant therapeutic efficacy in EG7 lymphoma tumorbearing mice. Our nano-platform technology can be used as a vaccine system to bypass ex vivo manipulation and enhance targeted delivery of tumor-specific antigens to DCs, which is well-suited for cancer immunotherapy.


Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 259-271 ◽  
Author(s):  
Joana Magalhães ◽  
Marina Pinheiro ◽  
Barbara Drasler ◽  
Dedy Septiadi ◽  
Alke Petri-Fink ◽  
...  

Aim: Design nanostructured lipid carriers (NLC) to facilitate drug delivery to tuberculosis-infected areas, exploiting macrophage mannose receptors and assess their uptake in a 3D human lung model. Materials & methods: NLCs and mannosylated-NLCs were synthetized and characterized. Their uptake and biocompatibility were tested in a 3D human lung model. Results: The formulations have appropriate size (170–202 nm) and morphology for lung deposition. Cell membrane integrity was maintained and no significant pro-inflammatory cytokine (IL-1β, IL-8 and TNF-α) secretion or morphological changes were observed 24 h post nanoparticles exposure. NLCs and mannosylated NLCs were distributed in the apical side of the lung tissue, both in macrophages and in epithelial cells. Conclusion: NLCs are biocompatible carriers and can be used for pulmonary drug delivery.


Biomaterials ◽  
2019 ◽  
Vol 219 ◽  
pp. 119340 ◽  
Author(s):  
Jingjing Gan ◽  
Chunyan Liu ◽  
Huanling Li ◽  
Shaocong Wang ◽  
Zhenzhen Wang ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 69
Author(s):  
Rosana Ribić ◽  
Marija Paurević ◽  
Srđanka Tomić

Muramyl dipeptide (MDP, N-acetylmuramyl-l-alanyl-d-isoglutamine) is known as the smallest synthetic adjuvant molecule capable of replacing whole Mycobacteria in Freund’s adjuvant. Numerous MDP derivatives were synthesized with the aim to avoid MDP unwanted side-effects. Many of them have therapeutic potential, including clinical use. A very important parameter in the improvement of pharmacological properties of MDP is lipophilicity, e.g., it eliminates drawbacks caused by poor macrophage penetration and rapid elimination. On the other side, mannose receptors (MR), present on immunocompetent cells (such as macrophages and dendritic cells), are considered to be pattern-recognition receptors and responsible for the binding, among others, of mannosylated antigens or relevant biologically active molecules containing mannose, thus affecting the immune reactions. Up to now, our research was directed towards desmuramyl peptides which contain adamantylglycine and mannosylated adamantylglycine moieties bound to the essential part of MDP, l-Ala-d-isoGln. Here, we present the design and synthesis of novel mannosylated muropeptide analogs containing 2-aminoadamantane-2-carboxylic acid. Prepared desmuramyl peptides have lipophilic 2-aminoadamantane-2-carboxylic acid attached at the N-terminus of desmuramy dipeptide core and mannose connected to the tripeptide over a glycolyl linker. Immunostimulating activities of prepared compounds will be evaluated in the mice model using ovalbumin as an antigen and compared with previously prepared derivatives.


Sign in / Sign up

Export Citation Format

Share Document