scholarly journals Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles

1987 ◽  
Vol 244 (1) ◽  
pp. 219-224 ◽  
Author(s):  
J M Jacobs ◽  
N J Jacobs

The protoporphyrinogen-oxidizing enzyme from Triton X-100 extracts of the mitochondrial and etioplast fractions of etiolated barley was purified by using ion-exchange and hydroxyapatite chromatography. The purified enzyme from both organelle fractions exhibited a Km of 5 microM and was labile to mild heat and acidification. The pH optimum (5-6) and the substrate-specificity (mesoporphyrinogen was oxidized as rapidly as protoporphyrinogen) revealed properties very different from the protoporphyrinogen-oxidizing enzyme of rat liver or yeast mitochondria, which is specific for protoporphyrinogen as substrate. The purest fractions showed a polypeptide band corresponding to an Mr of approx. 36,000 on SDS/polyacrylamide-gel electrophoresis. This is the first purification and characterization of the enzyme from a plant, and indicates no readily detectable differences between the enzyme isolated from mitochondrial or etioplast fractions, although only the latter organelle has the capacity for both haem and chlorophyll synthesis.

1979 ◽  
Author(s):  
M Ribieto ◽  
J Elion ◽  
D Labie ◽  
F Josso

For the purification of the abnormal prothrombin (Pt Metz), advantage has been taken of the existence in the family of three siblings who, being double heterozygotes for Pt Metz and a hypoprothrombinemia, have no normal Pt. Purification procedures included barium citrate adsorption and chromatography on DEAE Sephadex as for normal Pt. As opposed to some other variants (Pt Barcelona and Madrid), Pt Metz elutes as a single symetrical peak. By SDS polyacrylamide gel electrophoresis, this material is homogeneous and appears to have the same molecular weight as normal Pt. Comigration of normal and abnormal Pt in the absence of SDS, shows a double band suggesting an abnormal charge for the variant. Pt Metz exhibits an identity reaction with the control by double immunodiffusion. Upon activation by factor Xa, Pt Metz can generate amydolytic activity on Bz-Phe-Val-Arg-pNa (S2160), but only a very low clotting activity. Clear abnormalities are observed in the cleavage pattern of Pt Metz when monitored by SDS gel electrophoresis. The main feature are the accumulation of prethrombin l (Pl) and the appearance of abnormal intermediates migrating faster than Pl.


1979 ◽  
Vol 34 (7-8) ◽  
pp. 533-540 ◽  
Author(s):  
Helmut Duchmann ◽  
Lothar Träger

3,17 β-Hydroxysteroid dehydrogenase has been enriched and purified from cytosol of Streptomyces hydrogenans. After ammonium sulfate precipitation and filtration on Sephadex G-100 the enzyme was finally purified by preparative gel electrophoresis and DEAE-Sephadex A-50 chro­matography. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate gave a single band of mobility corresponding to molecular weight of 70 200 ± 2 500. 3 β-. 17 β- as well as 20 β-hydroxy steroids were dehydrogenated by the enzyme in the presence of NAD+. The dehydrogenation proceeded faster than the reduction of the corresponding ketosteroids in the presence of NADH. The enzyme does not accent NADP+ or NADPH as co-substrates. The apparent Km values were calculated to be 11 μᴍ for 5 α-dihydrotestosterone, 20 μᴍ for testosterone ana 68 μᴍ for epiandrosterone in the NAD+-driven reaction, 1.8 x 10-4 m for NADH+ and 1.9 x 10-4 ᴍ for NADH. The catalytic activity was influenced by the ratio of NAD+/ATP. The inhibition by ATP appears to be of a competitive type with respect to NAD+ (Ki 1.15 x 10-3 ᴍ).After sucrose gradient centrifugation in a preparative ultracentrifuge the enzyme sediments with 4.1 ± 0.1 S as estimated in comparison to other proteins of known sedimentation coefficient. The isoelectric point was determined to be 3.9 with the LKB preparative isoelectric focusing col­umn (pH 2-11) and 4.1 with the analytical flat bed polyacrylamide isofocusing (pH 3 - 5). The number of SH groups was determined to be 2 mol/mol enzyme. In the presence of 6 M urea the fig­ure inceases to 3 mol SH/mol enzyme. In the presence of an excess of p-chloromercuribenzoate the enzyme activity decreases only partially.


1998 ◽  
Vol 64 (2) ◽  
pp. 789-792 ◽  
Author(s):  
Giuliano Degrassi ◽  
Benedict C. Okeke ◽  
Carlo V. Bruschi ◽  
Vittorio Venturi

ABSTRACT Bacillus pumilus PS213 was found to be able to release acetate from acetylated xylan. The enzyme catalyzing this reaction has been purified to homogeneity and characterized. The enzyme was secreted, and its production was induced by corncob powder and xylan. Its molecular mass, as determined by gel filtration, is 190 kDa, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of 40 kDa. The isoelectric point was found to be 4.8, and the enzyme activity was optimal at 55°C and pH 8.0. The activity was inhibited by most of the metal ions, while no enhancement was observed. The Michaelis constant (Km ) andV max for α-naphthyl acetate were 1.54 mM and 360 μmol min−1 mg of protein−1, respectively.


1986 ◽  
Vol 239 (3) ◽  
pp. 699-704 ◽  
Author(s):  
S Chaudhuri ◽  
J M Lambert ◽  
L A McColl ◽  
J R Coggins

A procedure has been developed for the purification of 3-dehydroquinase from Escherichia coli. Homogeneous enzyme with specific activity 163 units/mg of protein was obtained in 19% overall yield. The subunit Mr estimated from polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate was 29,000. The native Mr, estimated by gel permeation chromatography on Sephacryl S-200 (superfine) and on TSK G3000SW, was in the range 52,000-58,000, indicating that the enzyme is dimeric. The catalytic properties of the enzyme have been determined and shown to be very similar to those of the biosynthetic 3-dehydroquinase component of the arom multifunctional enzyme of Neurospora crassa.


1986 ◽  
Vol 234 (2) ◽  
pp. 349-354 ◽  
Author(s):  
S A M Martin ◽  
J O Bishop

Histidine decarboxylase was purified 800-fold from the kidneys of thyroxine-treated mice. The purification procedure included precipitation of protein from a crude supernatant after heating it to 55 degrees C at pH 5.5, fractionation with (NH4)2SO4, phosphocellulose column chromatography, chromatofocusing, DEAE-Sepharose column chromatography, gel filtration on Sephacryl S-300 and preparative polyacrylamide-gel electrophoresis. The native enzyme had an estimated Mr of 113 000. The protein was analysed in SDS/10%-polyacrylamide gels and formed a single band corresponding to a subunit Mr of 55 000, indicating that it is a dimer. Three forms of the enzyme were resolved on isoelectrofocusing gels, with pI 5.3, 5.5 and 5.7.


1983 ◽  
Vol 29 (10) ◽  
pp. 1361-1368 ◽  
Author(s):  
Thomas P. Poirier ◽  
Stanley C. Holt

Capnocytophaga ochracea acid (AcP; EC 3.1.3.2) and alkaline (AlP; EC 3.1.3.1) phosphatase was isolated by Ribi cell disruption and purified by sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS–PAGE.) Both phosphatases eluted from Sephadex G-150 consistent with molecular weights (migration) of 140 000 and 110 000. SDS–PAGE demonstrated a 72 000 and 55 000 subunit molecular migration for AcP and AlP, respectively. The kinetics of activity of purified AcP and AIP on p-nitrophenol phosphate and phosphoseryl residues of the phosphoproteins are presented.


1979 ◽  
Author(s):  
M.J. Rabiet ◽  
J. Elion ◽  
D. Labie ◽  
F. Josso

For the purification of the abnormal prothrombin (Pt Metz), advantage has been taken of the existence in the family of three siblings who, being double heterozygotes for Pt Metz and a hypoprothrombinemia, have no normal Pt. Purification procedures included barium citrate adsorption and chromatography on DEAE Sephadex as for normal Pt. As opposed to some other variants (Pt Barcelona and Madrid), Pt Metz elutes as a single symetrical peak. By SDS Polyacrylamide gel electrophoresis, this material is homogeneous and appears to have the same molecular weight as normal Pt. Comigration of normal and abnormal Pt in the absence of SDS, shows a double band suggesting an abnormal charge for the variant. Pt Metz exhibits an identity reaction with the control by double immunodiffusion.Upon activation by factor Xa, Pt Metz can generate amydolytic activity on Bz-Phe-Va1-Arg-pNa (S2160), but only a very low clotting activity. Clear abnormalities are observed in the cleavage pattern of Pt Metz when monitored by SDS gel electrophoresis. The main feature are the accumulation of prethrombin 1 (P1) and the appearance of abnormal intermediates migra-ti ng faster than P1.


1989 ◽  
Vol 260 (3) ◽  
pp. 789-793 ◽  
Author(s):  
A Kispert ◽  
D J Meyer ◽  
E Lalor ◽  
B Coles ◽  
B Ketterer

A labile GSH transferase homodimer termed 11-11 was purified from rat testis by GSH-agarose affinity chromatography followed by anion-exchange f.p.l.c. The enzyme is unstable in the absence of thiol(s) and has relatively low affinity for both 1-chloro-2,4-dinitrobenzene (Km 4.4 mM) and GSH (Km(app.) 4.4mM). Its mobility on SDS/polyacrylamide-gel electrophoresis is slightly less than that of subunits 3 and 4 and its pI is 5.2. Subunit 11 has a blocked N-terminal amino acid residue, but after CNBr cleavage fragments accounting for 113 amino acid residues were sequenced and showed 65% homology with corresponding sequences in subunit 4, indicating that it is a member of the Mu family. GSH transferase 11 is a major isoenzyme in testis, epididymis, prostate and brain and present at lower concentrations in other tissues.


1981 ◽  
Vol 90 (1) ◽  
pp. 116-127 ◽  
Author(s):  
W W Franke ◽  
S Winter ◽  
C Grund ◽  
E Schmid ◽  
D L Schiller ◽  
...  

Epithelial cells of the small intestine, like those of other internal organs, contain intermediate-sized filaments immunologically related to epidermal prekeratin which are especially concentrated in the cell apex. Brush-order fractions were isolated from rat small intestine, and apical tonofilaments attached to desmosomal plaques and terminal web residues were prepared therefrom by extraction in high salt (1.5 M KCl) buffer and Triton X-100. The structure of these filaments was indistinguishable from that of epidermal tonofilaments and, as with epidermal prekeratin, filaments could be reconstituted from solubilized, denatured intestinal tonofilament protein. On SDS polyacrylamide gel electrophoresis of proteins of the extracted desmosome-tonofilament fractions, a number of typical brush-border proteins were absent or reduced, and enrichment of three major polypeptides of Mr 55,000, 48,000, and 40,000 was noted. On two-dimensional gel electrophoresis, the three enriched major polypeptides usually appeared as pairs of isoelectric variants, and the two smaller components (Mr 48,000, and 40,000) were relatively acidic (isoelectric pH values of 5.40 and below), compared to the Mr 55,000 protein which focused at pH values higher than 6.4. The tonofilament proteins were shown to be immunologically related to epidermal prekeratin by immunoreplica and blotting techniques using antibodies to bovine epidermal prekeratins. Similar major polypeptides were found in desmosome-attached tonofilaments from small intestine of mouse and cow. However, comparisons with epidermal tissues of cow and rat showed that all major polypeptides of intestinal tonofilaments were different from the major prekeratin polypeptides of epidermal tonofilaments. The results present the first analysis of a defined fraction of tonofilaments from a nonepidermal cell. The data indicate that structurally identical tonofilaments can be formed, in different types of cells, by different polypeptides of the cytokeratin family of proteins and that tonofilaments of various epithelia display tissue-specific patterns of their protein subunits.


Sign in / Sign up

Export Citation Format

Share Document