scholarly journals Nitrogenase of Klebsiella pneumoniae. Kinetic studies on the Fe protein involving reduction by sodium dithionite, the binding of MgADP and a conformation change that alters the reactivity of the 4Fe-4S centre

1987 ◽  
Vol 246 (2) ◽  
pp. 455-465 ◽  
Author(s):  
G A Ashby ◽  
R N F Thorneley

The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 × 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 × 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 × 10(5) less than k less than 3 × 10(6) M-1.s-1 and protein conformation change 6 × 10(2) less than k less than 6 × 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.

1988 ◽  
Vol 251 (1) ◽  
pp. 165-169 ◽  
Author(s):  
J Bergström ◽  
R R Eady ◽  
R N F Thorneley

The mid-point potentials of the Fe protein components (Ac2 and Ac2* respectively) of the Mo nitrogenase and V nitrogenase from Azotobacter chroococcum were determined in the presence of MgADP to be −450 mV (NHE) [Ac2(MgADP)2-Ac2*ox.(MgADP)2 couple] and −463 mV (NHE) [Ac2* (MgADP)2-Ac2*ox.(ADP)2 couple] at 23 degrees C at pH 7.2. These values are consistent with a flavodoxin characterized by Deistung & Thorneley [(1986) Biochem. J. 239, 69-75] with Em = −522 mV (NHE) being an effective electron donor to both the Mo nitrogenase and the V nitrogenase in vivo. Ac2*ox.(MgADP)2 and Ac2*ox.(MgADP)2 were reduced by SO2.- (formed by the predissociation of dithionite ion, S2O4(2-)) at similar rates, k = 4.7 × 10(6) +/- 0.5 × 10(6) M-1.s-1 and 3.2 × 10(6) +/- 0.2 × 10(6) M-1.s-1 respectively, indicating structural homology at the electron-transfer site associated with the [4Fe-4S] centre in these proteins.


1984 ◽  
Vol 224 (3) ◽  
pp. 895-901 ◽  
Author(s):  
D J Lowe ◽  
R N F Thorneley

Kinetic data for Klebsiella pneumoniae nitrogenase were used to determine the values of nine of the 17 rate constants that define the scheme for nitrogenase action described by Lowe & Thorneley [(1984) Biochem. J. 224, 877-886]. Stopped-flow spectrophotometric monitoring of the MgATP-induced oxidation of the Fe protein (Kp2) by the MoFe protein (Kp1) was used to determine the rates of association (k+1) and dissociation (k-1) of reduced Kp2(MgATP)2 with Kp1. The dependences of the apparent KNm2 on Fe protein/MoFe protein ratio and H2 partial pressure were used to determine the mutual displacement rates of N2 and H2 (k+10, k-10, k+11 and k-11). These data also allowed the rate constants for H2 evolution from progressively more reduced forms of Kp1 to be determined (k+7, k+8 and k+9). A mechanism for N2-dependent catalysis of 1H2H formation from 2H2 that requires H2 to be a competitive inhibitor of N2 reduction is also presented.


2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


1948 ◽  
Vol 26b (2) ◽  
pp. 175-180 ◽  
Author(s):  
C. A. Winkler ◽  
A. W. Hay ◽  
A. L. Thompson

The principal reaction of methyl-bis-β-chloroethylamine in methanol is dimerization, which results in one chlorine from each molecule becoming ionic, but this is accompanied by slight alcoholysis. The rate-controlling step is believed to be the first order formation of an ethylenimonium ion which reacts rapidly with one of its kind to form dimer. The rate expression as calculated from initial rate constants is k (initial) = 4.0 × 1013e−19600/RThr.−1.


1997 ◽  
Vol 326 (3) ◽  
pp. 637-640 ◽  
Author(s):  
Faridoon K. YOUSAFZAI ◽  
Robert R. EADY

We have investigated the kinetics of inactivation of Mo-nitrogenase isolated from Klebsiella pneumoniae when it forms an inhibited putative transition-state complex on incubation with ADP and AlF4-. In the presence of excess Kp2 (Fe protein of the Mo-nitrogenase of K. pneumoniae), the kinetics were found to depend on the Mo content of Kp1 (the MoFe protein of Mo-nitrogenase of K. pneumoniae). The residual nitrogenase activity versus time of incubation using Kp1 preparations containing integral, i.e. one or two Mo atoms per molecule of Kp1, were essentially monophasic, but significantly different rates of inactivation were observed. In contrast, the progress curves for preparations of Kp1 with non-integral Mo content were biphasic, suggesting the presence of two discrete catalytically active species of Kp1. The best fit to the observed data was obtained with a two-exponential expression, the amplitude of which was consistent with the Mo content, provided that the fast phase of the reaction was assigned to a Kp1 species containing one, and the slow phase to a species containing two Mo atoms per α2β2 tetramer. This analysis provides the first evidence for the existence of a catalytically active Kp1 species containing a single Mo atom. These data also indicate that MoFe protein which does not have all FeMoco binding sites occupied has an altered conformation compared with a fully loaded protein, and that the Fe protein reacts with these conformations at different rates to form the stable, but inhibited transition-state complex.


1957 ◽  
Vol 35 (7) ◽  
pp. 723-733 ◽  
Author(s):  
R. H. Pallen ◽  
C. Sivertz

Kinetic studies were made of the free radical photoinitiated addition of thiophenol to 1-octene and to styrene in the absence of oxygen. In addition to the usual attack, chain transfer, and termination steps, it is found that a reverse reaction accompanies the attack step, [Formula: see text] The rate constants for the thiophenol–styrene reaction were calculated to be [Formula: see text]kt = 2 × 107 liters.moles−1sec.−1. The over-all activation energies for the two reactions were found to be E (1-octene) = 1.2 kcal., E (styrene) = 2.4 kcal.; suggestions are submitted as to why these activation energies are so low. These reactions are compared with n-butyl mercaptan – olefin reactions.


1962 ◽  
Vol 40 (9) ◽  
pp. 1786-1797 ◽  
Author(s):  
A. Froese ◽  
A. H. Sehon ◽  
M. Eigen

The kinetics of protein–dye and antibody–hapten reactions were studied with the temperature-jump method. The systems used consisted of (i) bovine serum albumin (BSA) and the dye 1-naphthol-4-[4-(4′-azobenzene azo)phenyl arsonic acid], referred to as N—R′, (ii) BSA and the dye 1-naphthol-2-sulphonic acid-4-[4-(4′-azobenzene azo)phenyl arsonic acid], referred to as NS—R′, and (iii) rabbit antibodies to phenyl arsonic acid [Ab] and the hapten N—R′.Each of the systems exhibited a single relaxation time. From the analysis of the concentration dependence of the relaxation times, it was concluded that each system could be represented by the reactions[Formula: see text]where P refers to BSA or Ab, and D to N—R′ or NS—R′. The following rate constants were calculated for the three systems at 25 °C:[Formula: see text]The effects of temperature and pH on the rate constants of the system BSA – N—R′ are discussed.


1991 ◽  
Vol 279 (1) ◽  
pp. 81-85 ◽  
Author(s):  
K Fisher ◽  
D J Lowe ◽  
R N F Thorneley

The pre-steady-state kinetics of H2 evolution from Klebsiella pneumoniae nitrogenase functioning at 23 degrees C, pH 7.4, under conditions of extremely low electron flux through the MoFe-protein exhibited a lag phase of several minutes duration. The approach to a steady-state rate of H2 evolution was accompanied by a 50% decrease in the amplitude of the MoFe-protein e.p.r. signal. These kinetics have been simulated using our published kinetic model for nitrogenase [Lowe & Thorneley (1984) Biochem. J. 224, 877-886], which was developed using data obtained with nitrogenase functioning at high electron fluxes. The e.p.r. data showed that the rate of complex-formation between reduced Fe-protein and the MoFe-protein (k+1 = 5 x 10(7) M-1.s-1) is the same for the resting (E0) and one-electron-reduced (E1H) states of the MoFe-protein. Stopped-flow spectrophotometry also showed that electron transfer from the Fe-protein to the MoFe-protein in states E0 and E1H occurs at the same rate (kobs. = 140 s-1). These data support our previous assumption that the rate constants that define the ‘Fe-protein cycle’ are independent of the level of reduction of the MoFe-protein.


2019 ◽  
Vol 44 (4) ◽  
pp. 300-306
Author(s):  
Joanna Drzeżdżon ◽  
Agnieszka Piotrowska-Kirschling ◽  
Lech Chmurzyński ◽  
Dagmara Jacewicz

The kinetics of the aquation reaction of the [VO(ida)(bipy)]·2H2O (VO(ida)(bipy)) complex (where ida = iminodiacetate anion and bipy = 2,2’-bipyridine) promoted by [Fe(H2O)6]3+ ions were investigated in aqueous solutions. Spectrophotometric studies were carried out at different temperatures in the range of 293.15–313.15 K. The concentration of the [Fe(H2O)6]3+ (Fe3+) ions was kept within the range of 2 × 10–4 to 8 × 10–4 mol L–1, and the concentration of VO(ida)(bipy) was 1 × 10–3 mol L–1. The values of the observable reaction rate constants were calculated based on the Glint computer program. Furthermore, the mechanism for the aquation of VO(ida)(bipy), induced by Fe(III) ions, has been proposed.


1964 ◽  
Vol 19 (3) ◽  
pp. 522-525 ◽  
Author(s):  
J. A. Morello ◽  
Margot R. Craw ◽  
H. P. Constantine ◽  
R. E. Forster

The rate of removal of oxygen from aqueous solution by sodium dithionite in 0.1 m sodium hydroxide was studied in a rapid-reaction apparatus using a membrane-covered polarographic cell to determine Po2 in the flowing liquid. The measurements were made at 37 C, so that the data would be applicable in studies of the kinetics of oxyhemoglobin in blood. The initial concentrations in the mixed reacting solution were between 8 x 10-5 m and 47.5 x 10-5 m for dithionite, and either 10 x 10-5 m or 47.8 x 10-5 m for O2. The reaction over the first 40 msec was found to be first order with respect to dithionite and zero order with respect to molecular oxygen. The initial rate constant was 42.5 ± sd 3.6 sec-1. oxygen reduction by dithionite; hemoglobin; deoxygenation rate; dithionite-oxygen reaction rate Submitted on June 17, 1963


Sign in / Sign up

Export Citation Format

Share Document