scholarly journals Sequence and comparative analysis of three Enterobacter cloacae ampC β-lactamase genes and their products

1988 ◽  
Vol 250 (3) ◽  
pp. 753-760 ◽  
Author(s):  
M Galleni ◽  
F Lindberg ◽  
S Normark ◽  
S Cole ◽  
N Honore ◽  
...  

The sequences of three Enterobacter cloacae ampC beta-lactamase genes have been determined. The deduced amino acid sequences are very similar: out of a total of 361 residues, only eight positions were found to be variable, and several mutations yielded residues with very similar properties. The kinetic properties of two of the enzymes were not significantly different. The three enzymes also exhibited a high degree of homology (greater than 70%) with the ampC beta-lactamases of Escherichia coli K12 and Citrobacter freundii, confirming the homogeneity of class-C beta-lactamases.

1986 ◽  
Vol 240 (1) ◽  
pp. 215-219 ◽  
Author(s):  
C Little ◽  
E L Emanuel ◽  
J Gagnon ◽  
S G Waley

Beta-lactamases are divided into classes A, B and C on the basis of their amino acid sequences. Beta-Lactamases were incubated at pH 4.0 with the carboxy-group reagent 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide plus a coloured nucleophile and the extents of inactivation and nucleophile incorporation were monitored. Two class A enzymes (from Bacillus cereus and Bacillus licheniformis) and two class C enzymes (from Enterobacter cloacae P99 and Pseudomonas aeruginosa) were examined. All four enzymes were inactivated, with total inactivation corresponding to the incorporation of approx. 2-3 mol of nucleophile/mol of enzyme. In the case of beta-lactamase I from Bacillus cereus, some 53% of the incorporated nucleophile was located on glutamic acid-168 in the amino acid sequence.


1996 ◽  
Vol 40 (7) ◽  
pp. 1736-1740 ◽  
Author(s):  
M Gazouli ◽  
L S Tzouvelekis ◽  
E Prinarakis ◽  
V Miriagou ◽  
E Tzelepi

Cefoxitin resistance in Klebsiella pneumoniae from Escherichia coli strains isolated in Greek hospitals was found to be due to the acquisition of similar plasmids coding for group 1 beta-lactamases. The plasmids were not self-transferable but were mobilized by conjugative plasmids. These elements have also been spread to Enterobacter aerogenes. The most common enzyme was a Citrobacter freundii-derived cephalosporinase (LAT-2) which differed from LAT-1 by three amino acids.


2006 ◽  
Vol 34 (1) ◽  
pp. 143-145 ◽  
Author(s):  
T.A. Clarke ◽  
A.M. Hemmings ◽  
B. Burlat ◽  
J.N. Butt ◽  
J.A. Cole ◽  
...  

The recent crystallographic characterization of NrfAs from Sulfurospirillum deleyianum, Wolinella succinogenes, Escherichia coli and Desulfovibrio desulfuricans allows structurally conserved regions to be identified. Comparison of nitrite and sulphite reductase activities from different bacteria shows that the relative activities vary according to organism. By comparison of both amino acid sequences and structures, differences can be identified in the monomer–monomer interface and the active-site channel; these differences could be responsible for the observed variance in substrate activity and indicate that subtle changes in the NrfA structure may optimize the enzyme for different roles.


2000 ◽  
Vol 62 (9) ◽  
pp. 941-945 ◽  
Author(s):  
Yoshitsugu OCHIAI ◽  
Hideto FUKUSHI ◽  
Cai YAN ◽  
Tsuyoshi YAMAGUCHI ◽  
Katsuya HIRAI

1997 ◽  
Vol 41 (11) ◽  
pp. 2547-2549 ◽  
Author(s):  
L Bret ◽  
E B Chaibi ◽  
C Chanal-Claris ◽  
D Sirot ◽  
R Labia ◽  
...  

A novel inhibitor-resistant TEM (IRT) beta-lactamase was detected in an Escherichia coli isolate resistant to amoxicillin-clavulanate and susceptible to cephalothin. The substrate and inhibitor profiles of this beta-lactamase were similar to those of IRT-1 and IRT-2. The novel IRT's bla gene was sequenced, and the deduced amino acid sequence showed the amino acid replacement Arg for His-244 of the TEM-1 sequence. Substitutions for Arg-244 have been reported in three TEM-1 mutants: IRT-1 (which corresponds to TEM-31) (Cys), IRT-2/TEM-30 (Ser), and TEM-41 (Thr). We designated this novel beta-lactamase, which corresponds to TEM-51, IRT-15.


1996 ◽  
Vol 40 (2) ◽  
pp. 509-513 ◽  
Author(s):  
A Bauernfeind ◽  
I Stemplinger ◽  
R Jungwirth ◽  
S Ernst ◽  
J M Casellas

Amino acid sequences determined either by protein sequencing or by DNA sequencing are identical for cefotaximases CTX-M-1 and MEN-1, whereas CTX-M-2 is 84% identical to CTX-M-1/MEN-1. Both beta-lactamases are distantly related to other plasmidic class A enzymes (homology to TEM-1 is 38.1% for CTX-M-1/MEN-1 and 36.5% for CTX-M-2); the closest relationship was with the chromosomal beta-lactamase of Klebsiella oxytoca E23004 (homologies of 74.5% for CTX-M-1/MEN-1 and 77.9% for CTX-M-2). The cefotaximases CTX-M-1/MEN-1 and CTX-M-2 represent two members of a new subgroup of plasmidic class A beta-lactamases.


1997 ◽  
Vol 41 (3) ◽  
pp. 715-716 ◽  
Author(s):  
C Chanal-Claris ◽  
D Sirot ◽  
L Bret ◽  
P Chatron ◽  
R Labia ◽  
...  

A novel extended-spectrum TEM-type beta-lactamase was detected in an Escherichia coli isolate which was resistant to ceftazidime and susceptible to cephalothin. The corresponding bla gene was sequenced. The deduced amino acid sequence showed the following three amino acid replacements with respect to the TEM-2 sequence: Glu-->Lys-104, Arg-->Ser-164, and Glu-->Lys-240. Since it confers a ceftazidimase-type resistance phenotype, we propose for this novel enzyme the designation CAZ-9, corresponding to TEM-46 in the sequential numbering scheme of TEM beta-lactamases.


1997 ◽  
Vol 41 (9) ◽  
pp. 2041-2046 ◽  
Author(s):  
A Bauernfeind ◽  
S Wagner ◽  
R Jungwirth ◽  
I Schneider ◽  
D Meyer

An Escherichia coli strain resistant to a broad spectrum of beta-lactams, including cephamycins, was isolated from a patient suffering from urinary tract infection. A resistance plasmid (pMVP-7) was transferred from the clinical isolate to an Escherichia coli recipient. Both strains produce a cefoxitin-hydrolyzing beta-lactamase focusing at pI 6.7. The phenotype was similar to that of a Klebsiella pneumoniae strain producing cephamycinase FOX-1, so primers were selected from the FOX-1 sequence to amplify the bla gene of the transconjugant. The PCR product obtained was sequenced. The percentage of identity of the deduced amino acid sequence with sequences of other AmpC-type beta-lactamases was 96.9% with FOX-1, 74.9% with CMY-1, and 67.7% with MOX-1. This new plasmid-mediated enzyme is most closely related to FOX-1 (11 amino acid exchanges). We therefore propose the designation FOX-2.


1997 ◽  
Vol 41 (9) ◽  
pp. 1940-1943 ◽  
Author(s):  
R A Bonomo ◽  
J R Knox ◽  
S D Rudin ◽  
D M Shlaes

Amino acid changes that influence activity and resistance to beta-lactams and beta-lactamase inhibitors were explored by constructing the Gly238Ser and Met69Ile-Gly238Ser mutants of the OHIO-1 beta-lactamase, a class A enzyme of the SHV family. The Km values of cefotaxime and ceftazidime for OHIO-1 and Met69Ile beta-lactamases were > or = 500 microM. The Km of cefotaxime for the Gly238Ser beta-lactamase was 26 microM, and that of ceftazidime was 105 microM. The Km of cefotaxime for the Met69Ile-Gly238Ser beta-lactamase was 292 microM, and that of ceftazidime was 392 microM. For the beta-lactamase inhibitors clavulanate and sulbactam, the apparent Ki values for the Met69Ile-Gly238Ser enzyme were 0.03 and 0.15 microM, respectively. Relative Vmax values indicate that the Met69Ile-Gly238Ser mutant of the OHIO-1 beta-lactamase possesses cephalosporinase activity similar to that of the Gly238Ser mutant but diminished penicillinase activity. In an Escherichia coli DH5alpha strain that possesses a Met69Ile beta-lactamase of the OHIO-1 family, the added Gly238Ser mutation resulted in a phenotype with qualities that confer resistance to expanded-spectrum cephalosporins and, to a lesser extent, beta-lactamase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document