scholarly journals Acetylcholinesterase from Apis mellifera head. Evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separation

1988 ◽  
Vol 255 (2) ◽  
pp. 463-470 ◽  
Author(s):  
L P Belzunces ◽  
J P Toutant ◽  
M Bounias

The polymorphism of bee acetylcholinesterase was studied by sucrose-gradient-sedimentation analysis and non-denaturing electrophoretic analysis of fresh extracts. Lubrol-containing extracts exhibited only one form, which sedimented at 5 S when analysed on high-salt Lubrol-containing gradients and 6 S when analysed on low-salt Lubrol-containing gradients. The 5 S/6 S form aggregated upon removal of the detergent when sedimented on detergent-free gradients and was recovered in the detergent phase after Triton X-114 phase separation. Thus the 5 S/6 S enzyme corresponds to an amphiphilic acetylcholinesterase form. In detergent-free extracts three forms, whose apparent sedimentation coefficients are 14 S, 11 S and 7 S, were observed when sedimentations were performed on detergent-free gradients. Sedimentation analyses on detergent-containing gradients showed only a 5 S peak in high-salt detergent-free extracts and a 6 S peak, with a shoulder at about 7 S, in low-salt detergent-free extracts. Electrophoretic analysis in the presence of detergent demonstrated that the 14 S and 11 S peaks corresponded to aggregates of the 5 S/6 S form, whereas the 7 S peak corresponded to a hydrophilic acetylcholinesterase form which was recovered in the aqueous phase following Triton X-114 phase separation. The 5 S/6 S amphiphilic form could be converted into a 7.1 S hydrophilic form by phosphatidylinositol-specific phospholipase C digestion.

1991 ◽  
Vol 280 (3) ◽  
pp. 745-751 ◽  
Author(s):  
N M Hooper ◽  
A Bashir

Treatment of kidney microvillar membranes with the non-ionic detergent Triton X-114 at 0 degrees C, followed by low-speed centrifugation, generated a detergent-insoluble pellet and a detergent-soluble supernatant. The supernatant was further fractionated by phase separation at 30 degrees C into a detergent-rich phase and a detergent-depleted or aqueous phase. Those ectoenzymes with a covalently attached glycosyl-phosphatidylinositol (G-PI) membrane anchor were recovered predominantly (greater than 73%) in the detergent-insoluble pellet. In contrast, those ectoenzymes anchored by a single membrane-spanning polypeptide were recovered predominantly (greater than 62%) in the detergent-rich phase. Removal of the hydrophobic membrane-anchoring domain from either class of ectoenzyme resulted in the proteins being recovered predominantly (greater than 70%) in the aqueous phase. This technique was also applied to other membrane types, including pig and human erythrocyte ghosts, where, in both cases, the G-PI-anchored acetylcholinesterase partitioned predominantly (greater than 69%) into the detergent-insoluble pellet. When the microvillar membranes were subjected only to differential solubilization with Triton X-114 at 0 degrees C, the G-PI-anchored ectoenzymes were recovered predominantly (greater than 63%) in the detergent-insoluble pellet, whereas the transmembrane-polypeptide-anchored ectoenzymes were recovered predominantly (greater than 95%) in the detergent-solubilized supernatant. Thus differential solubilization and temperature-induced phase separation in Triton X-114 distinguished between G-PI-anchored membrane proteins, transmembrane-polypeptide-anchored proteins and soluble, hydrophilic proteins. This technique may be more useful and reliable than susceptibility to release by phospholipases as a means of identifying a G-PI anchor on an unpurified membrane protein.


1993 ◽  
Vol 290 (3) ◽  
pp. 791-795 ◽  
Author(s):  
L Klewes ◽  
E A Turley ◽  
P Prehm

The hyaluronate synthase complex was identified in plasma membranes from B6 cells. It contained two subunits of molecular masses 52 kDa and 60 kDa which bound the precursor UDP-GlcA in digitonin solution and partitioned into the aqueous phase, together with nascent hyaluronate upon Triton X-114 phase separation. The 52 kDa protein cross-reacted with poly- and monoclonal antibodies raised against the streptococcal hyaluronate synthase and the 60 kDa protein was recognized by monoclonal antibodies raised against a hyaluronate receptor. The 52 kDa protein was purified to homogeneity by affinity chromatography with monoclonal anti-hyaluronate synthase.


2001 ◽  
Vol 353 (2) ◽  
pp. 339-344 ◽  
Author(s):  
Sung Wook PARK ◽  
Kyong CHOI ◽  
Cheol KIM ◽  
Hwang Hee Blaise LEE ◽  
Nigel M. HOOPER ◽  
...  

Spontaneous enzymic release of renal dipeptidase (RDPase; EC 3.4.13.19), a glycosylphosphatidylinositol (GPI)-linked ectoenzyme, was observed in vitro during incubation of porcine proximal tubules at 37°C. Triton X-114 phase separation of the released RDPase showed that the majority of the enzyme activity partitioned into the aqueous phase, indicating its hydrophilic nature. Immunoblot analyses using an antibody against the cross-reacting determinant (CRD) inositol 1,2-cyclic monophosphate, the epitope formed by phospholipase C (PLC) cleavage of the GPI anchor on a protein, detected the released RDPase. Reprobing the immunoblot with an anti-RDPase serum showed the RDPase band co-migrating with the CRD band. The release of RDPase from the proximal tubules was a Ca2+-dependent process and had a pH optimum of 9.0. These results indicate that RDPase is released from the proximal tubules by the action of a distinct endogenous GPI-specific PLC.


Author(s):  
Georg Krainer ◽  
Timothy J. Welsh ◽  
Jerelle A. Joseph ◽  
Jorge R. Espinosa ◽  
Sina Wittmann ◽  
...  

AbstractMany cellular proteins demix spontaneously from solution to form liquid condensates. These phase-separated systems have wide-ranging roles in health and disease. Elucidating the molecular driving forces underlying liquid–liquid phase separation (LLPS) is therefore a key objective for understanding biological function and malfunction. Here we show that proteins implicated in cellular LLPS, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, which form condensates at low salt concentrations, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that phase separation in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus provides a new view on the cooperation of hydrophobicity and non-ionic interactions as non-specific driving forces for the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.


1995 ◽  
Vol 306 (3) ◽  
pp. 687-692 ◽  
Author(s):  
V Talesa ◽  
M Grauso ◽  
E Giovannini ◽  
G Rosi ◽  
J P Toutant

Two acetylcholinesterases (AChE) differing in substrate and inhibitor specificities have been characterized in the medical leech (Hirudo medicinalis). A ‘spontaneously-soluble’ portion of AChE activity (SS-AChE) was recovered from haemolymph and from tissues dilacerated in low-salt buffer. A second portion of AChE activity was obtained after extraction of tissues in low-salt buffer alone or containing 1% Triton X-100 [detergent-soluble (DS-) AChE). Both enzymes were purified to homogeneity by affinity chromatography on edrophonium- and concanavalin A-Sepharose columns. Denaturing SDS/PAGE under reducing conditions gave one band at 30 kDa for purified SS-AChE and 66 kDa for DS-AChE. Sephadex G-200 chromatography indicated a molecular mass of 66 kDa for native SS-AChE and of 130 kDa for DS-AChE. SS-AChE showed a single peak sedimenting at 5.0 S in sucrose gradients with or without Triton X-100, suggesting that it was a hydrophylic monomer (G1). DS-AChE sedimented as a single 6.1-6.5 S peak in the presence of Triton X-100 and aggregated in the absence of detergent. A treatment with phosphatidylinositol-specific phospholipase C suppressed aggregation and gave a 7 S peak. DS-AChE was thus an amphiphilic glycolipid-anchored dimer. Substrate specificities were studied using p-nitrophenyl esters (acetate, propionate and butyrate) and corresponding thiocholine esters as substrates. SS-AChE displayed only limited variations in Km values with charged and uncharged substrates, suggesting a reduced influence of electrostatic interactions in the enzyme substrate affinity. By contrast, DS-AChE displayed higher Km values with uncharged than with charged substrates. SS-AChE was more sensitive to eserine and di-isopropyl fluorophosphate (IC50 5 x 10(-8) and 10(-8) M respectively) than DS-AChE (5 x 10(-7) and 5 x 10(-5) M.


2021 ◽  
pp. 116182
Author(s):  
Md. Monir Hosen ◽  
Sharmin Sultana Rakhi ◽  
M. Alfakeer ◽  
Mohammad Majibur Rahman ◽  
Shamim Mahbub ◽  
...  
Keyword(s):  

1984 ◽  
Vol 259 (23) ◽  
pp. 14922-14927 ◽  
Author(s):  
G Alcaraz ◽  
J P Kinet ◽  
N Kumar ◽  
S A Wank ◽  
H Metzger

1978 ◽  
Vol 30 (1) ◽  
pp. 151-174
Author(s):  
J.G. Robertson ◽  
M.P. Warburton ◽  
P. Lyttleton ◽  
A.M. Fordyce ◽  
S. Bullivant

Peribacteroid membranes and bacteroid envelope inner membranes have been isolated from developing lupin nodules. Isolation of the peribacteroid membranes was achieved by first preparing membrane-enclosed bacteroids free from other plant organelles or membranes. The peribacteroid membranes were then released by osmotic shock and purified by centrifugation to equilibrium on sucrose gradients. The bacteroids were broken in a pressure cell and the bacteroid envelope inner membranes were isolated using sucrose gradient fractionation of the bacteroid total envelope preparation. The density of the peribacteroid membranes decreased during the period of development of N2-fixation in lupin nodules from 1.148 g/ml for nodules from 12-day plants to 1.137 g/ml for nodules from 18-day plants. The density of the bacteroid envelope inner membranes from nodules from 18-day plants was 1–153 g/ml. The identity and homogeneity of the isolated membranes was established, by comparison with membranes in intact nodules, using phosphotungstic acid and silver staining of thin sections and particle densitites on faces of freeze-fracture replicas of the membranes. Analyses for NADH oxidase and succinate dehydrogenase, spectral analyses and gel-electrophoretic analysis of proteins were also used to characterize the membrane and soluble protein fractions from the nodules. The ratio of lipid to protein was 6.1 for the peribacteroid membranes and 2.5 for the bacteroid envelope inner membranes. Leghaemoglobin was localized in the plant cytoplasm in lupin nodules and not in the peribacteroid space.


1986 ◽  
Vol 49 (6) ◽  
pp. 423-427 ◽  
Author(s):  
K.-D. HENRY CHIN ◽  
P. E. KOEHLER

Two factors, salt concentration and incubation temperature, were examined for their effect on the formation of histamine, phenethylamine, tryptamine and tyramine during miso (soybean paste) fermentation. Misos containing 5 and 10% NaCl were prepared and incubated at 25 and 35°C. The effect of each factor was determined from the chemical and microbiological changes in the misos during fermentation. Salt level was a significant factor in the formation of amines. Higher amine levels were found in low-salt (5% NaCl) formulations than in high-salt (10% NaCl) misos. Incubation temperature within the range of 25 to 35°C during fermentation had little effect on amine formation in misos.


Sign in / Sign up

Export Citation Format

Share Document