Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro

2001 ◽  
Vol 353 (2) ◽  
pp. 339-344 ◽  
Author(s):  
Sung Wook PARK ◽  
Kyong CHOI ◽  
Cheol KIM ◽  
Hwang Hee Blaise LEE ◽  
Nigel M. HOOPER ◽  
...  

Spontaneous enzymic release of renal dipeptidase (RDPase; EC 3.4.13.19), a glycosylphosphatidylinositol (GPI)-linked ectoenzyme, was observed in vitro during incubation of porcine proximal tubules at 37°C. Triton X-114 phase separation of the released RDPase showed that the majority of the enzyme activity partitioned into the aqueous phase, indicating its hydrophilic nature. Immunoblot analyses using an antibody against the cross-reacting determinant (CRD) inositol 1,2-cyclic monophosphate, the epitope formed by phospholipase C (PLC) cleavage of the GPI anchor on a protein, detected the released RDPase. Reprobing the immunoblot with an anti-RDPase serum showed the RDPase band co-migrating with the CRD band. The release of RDPase from the proximal tubules was a Ca2+-dependent process and had a pH optimum of 9.0. These results indicate that RDPase is released from the proximal tubules by the action of a distinct endogenous GPI-specific PLC.

1991 ◽  
Vol 280 (3) ◽  
pp. 745-751 ◽  
Author(s):  
N M Hooper ◽  
A Bashir

Treatment of kidney microvillar membranes with the non-ionic detergent Triton X-114 at 0 degrees C, followed by low-speed centrifugation, generated a detergent-insoluble pellet and a detergent-soluble supernatant. The supernatant was further fractionated by phase separation at 30 degrees C into a detergent-rich phase and a detergent-depleted or aqueous phase. Those ectoenzymes with a covalently attached glycosyl-phosphatidylinositol (G-PI) membrane anchor were recovered predominantly (greater than 73%) in the detergent-insoluble pellet. In contrast, those ectoenzymes anchored by a single membrane-spanning polypeptide were recovered predominantly (greater than 62%) in the detergent-rich phase. Removal of the hydrophobic membrane-anchoring domain from either class of ectoenzyme resulted in the proteins being recovered predominantly (greater than 70%) in the aqueous phase. This technique was also applied to other membrane types, including pig and human erythrocyte ghosts, where, in both cases, the G-PI-anchored acetylcholinesterase partitioned predominantly (greater than 69%) into the detergent-insoluble pellet. When the microvillar membranes were subjected only to differential solubilization with Triton X-114 at 0 degrees C, the G-PI-anchored ectoenzymes were recovered predominantly (greater than 63%) in the detergent-insoluble pellet, whereas the transmembrane-polypeptide-anchored ectoenzymes were recovered predominantly (greater than 95%) in the detergent-solubilized supernatant. Thus differential solubilization and temperature-induced phase separation in Triton X-114 distinguished between G-PI-anchored membrane proteins, transmembrane-polypeptide-anchored proteins and soluble, hydrophilic proteins. This technique may be more useful and reliable than susceptibility to release by phospholipases as a means of identifying a G-PI anchor on an unpurified membrane protein.


1993 ◽  
Vol 290 (3) ◽  
pp. 791-795 ◽  
Author(s):  
L Klewes ◽  
E A Turley ◽  
P Prehm

The hyaluronate synthase complex was identified in plasma membranes from B6 cells. It contained two subunits of molecular masses 52 kDa and 60 kDa which bound the precursor UDP-GlcA in digitonin solution and partitioned into the aqueous phase, together with nascent hyaluronate upon Triton X-114 phase separation. The 52 kDa protein cross-reacted with poly- and monoclonal antibodies raised against the streptococcal hyaluronate synthase and the 60 kDa protein was recognized by monoclonal antibodies raised against a hyaluronate receptor. The 52 kDa protein was purified to homogeneity by affinity chromatography with monoclonal anti-hyaluronate synthase.


1988 ◽  
Vol 255 (2) ◽  
pp. 463-470 ◽  
Author(s):  
L P Belzunces ◽  
J P Toutant ◽  
M Bounias

The polymorphism of bee acetylcholinesterase was studied by sucrose-gradient-sedimentation analysis and non-denaturing electrophoretic analysis of fresh extracts. Lubrol-containing extracts exhibited only one form, which sedimented at 5 S when analysed on high-salt Lubrol-containing gradients and 6 S when analysed on low-salt Lubrol-containing gradients. The 5 S/6 S form aggregated upon removal of the detergent when sedimented on detergent-free gradients and was recovered in the detergent phase after Triton X-114 phase separation. Thus the 5 S/6 S enzyme corresponds to an amphiphilic acetylcholinesterase form. In detergent-free extracts three forms, whose apparent sedimentation coefficients are 14 S, 11 S and 7 S, were observed when sedimentations were performed on detergent-free gradients. Sedimentation analyses on detergent-containing gradients showed only a 5 S peak in high-salt detergent-free extracts and a 6 S peak, with a shoulder at about 7 S, in low-salt detergent-free extracts. Electrophoretic analysis in the presence of detergent demonstrated that the 14 S and 11 S peaks corresponded to aggregates of the 5 S/6 S form, whereas the 7 S peak corresponded to a hydrophilic acetylcholinesterase form which was recovered in the aqueous phase following Triton X-114 phase separation. The 5 S/6 S amphiphilic form could be converted into a 7.1 S hydrophilic form by phosphatidylinositol-specific phospholipase C digestion.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 585-585 ◽  
Author(s):  
Jeremy P Wood ◽  
Ammon M. Fager ◽  
Jay R. Silveira ◽  
Paula B. Tracy

Abstract Coagulation factor V exists in two pools in human blood. One is plasma-derived, originating from synthesis in the liver. The other is platelet-derived, originating from endocytosis of the plasma-derived cofactor by megakaryocytes and consisting of both unactivated and activated cofactor. Studies have demonstrated the presence of a non-dissociable, membrane-bound form of platelet-derived factor Va. When washed platelets were activated with thrombin and subjected to additional washing in the presence of EDTA to disrupt the calcium-dependent interaction between the factor Va heavy and light chains, western blotting and flow cytometric analyses revealed that ~35% of the heavy chain could not be removed from the platelet surface. Similarly, in a prothrombin time-based clotting assay, ~25% of the factor Va cofactor activity remained on the activated platelet surface after extensive washing, demonstrating that this platelet-bound cofactor pool functions in Prothrombinase. The mechanism by which this factor Va pool is bound to the membrane was investigated. Sequence analysis of factor Va has revealed a consensus sequence for glycosylphosphatidylinositol (GPI) anchor addition at Ser692 in the C-terminus of the heavy chain. Lipid raft domains in cell membranes are enriched in GPI-anchored proteins and are resistant to solubilization in Triton X-100 at 4°C but are soluble at 37°C. Compared to lysis at 4°C, ~50% more factor Va heavy chain was solubilized when platelets were lysed at 37°C. When cells are solubilized in Triton X-114, membrane-anchored and trans-membrane proteins segregate to the detergent phase, and when activated platelets were subjected to this procedure, a portion of the factor Va heavy chain segregated to the detergent phase. Flow cytometric analyses of activated platelets have demonstrated that phosphatidylinositol-specific phospholipase C (PI-PLC), which can cleave GPI-anchored proteins from cell surfaces, is able to remove ~45% of the non-dissociably bound factor Va heavy chain from the platelet surface in a dose-dependent manner. Subsequent analysis of these samples by Triton X-114 phase separation corroborated these results, indicating that ~50% of the heavy chain was removed from the detergent phase upon treatment with PI-PLC. After cleavage by PI-PLC, GPI-anchored proteins express an epitope known as the cross-reacting determinant (CRD), which encompasses the remainder of the GPI anchor on the modified protein. Western blotting analyses of platelet supernatants after PI-PLC treatment have demonstrated that the platelet-derived factor Va heavy chain contains the CRD epitope. To investigate the origin of the non-dissociably bound pool of factor Va on the platelet surface, platelets were isolated from a factor V-deficient individual with undetectable levels of the cofactor, who receives therapeutic transfusions of fresh frozen plasma. When the individual’s platelets were subjected to Triton X-114 phase separation, a population of factor Va heavy chain was detected in the detergent phase. These results are consistent with the non-dissociable portion of the platelet-derived factor Va pool being formed by post-translational modification of factor V from plasma subsequent to its endocytosis by megakaryocytes. The presence of a GPI anchor consensus sequence in the factor Va heavy chain, combined with the washing, solubilization, phase separation, PI-PLC treatment, and anti-CRD immunoblotting data strongly suggest that non-dissociably bound, platelet-derived factor Va is linked to the activated platelet membrane via a GPI anchor on its heavy chain. GPI-anchored, platelet-derived factor Va is functional in Prothrombinase, and, as it is retained on the platelet surface at the site of vascular injury, it is likely a physiologically significant source of cofactor activity.


2001 ◽  
Vol 353 (2) ◽  
pp. 339 ◽  
Author(s):  
Sung Wook PARK ◽  
Kyong CHOI ◽  
Il Cheol KIM ◽  
Hwang Hee Blaise LEE ◽  
Nigel M. HOOPER ◽  
...  

1970 ◽  
Vol 117 (2) ◽  
pp. 319-324 ◽  
Author(s):  
G. J. Mulder

1. The detergent Triton X-100 activates UDP glucuronyltransferase from rat liver in vitro six- to seven-fold with p-nitrophenol as substrate. The enzyme activity when measured in the presence of Triton X-100 is increased significantly by pretreatment of male rats with phenobarbital for 4 days (90mg/kg each day intraperitoneally). If no Triton X-100 is applied in vitro such an increase could not be shown. In all further experiments the enzyme activity was measured after activation by Triton X-100. 2. The Km of the enzyme for the substrate p-nitrophenol does not change on phenobarbital pretreatment. 3. When the microsomal fraction from the liver of untreated rats is subfractionated on a sucrose density gradient, 47% of the enzyme activity is recovered in the rough-surfaced microsomal fraction, which also has a higher specific activity than the smooth-surfaced fraction. 4. Of the increase in activity after the phenobarbital pretreatment 50% occurs in the smooth-surfaced fraction, 19% in the rough-surfaced fraction and 31% in the fraction located between the smooth- and rough-surfaced microsomal fractions on the sucrose density gradient. 5. The latency of the enzyme in vitro, as shown by the effect of the detergent Triton X-100, is discussed in relation to the proposed heterogeneity of UDP glucuronyltransferase.


1991 ◽  
Vol 69 (2-3) ◽  
pp. 154-162 ◽  
Author(s):  
Christine P. Nichol ◽  
Basil D. Roufogalis

Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by α-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.Key words: acetylcholinesterase, bovine erythrocytes, phosphatidylinositol-specific phospholipase C, phase separation, affinity chromatography.


1977 ◽  
Vol 166 (3) ◽  
pp. 429-435 ◽  
Author(s):  
G. Subba Rao ◽  
Leonard N. Norcia ◽  
Joanne Pieringer ◽  
Ronald A. Pieringer

Triton X-100 extracts of rat brain microsomal fraction catalyse the formation of sulphogalactosyldiacylglycerol from galactosyldiacylglycerol and adenosine 3′-phosphate 5′-sulphatophosphate. Of the various subcellular fractions of brain assayed, the microsomal fraction contained most (79%) of the adenosine 3′-phosphate 5′-sulphatophosphate–galactosyldiacylglycerol sulphotransferase activity. The enzyme activity was stimulated by Triton X-100 and showed linearity with increasing time, concentrations of enzyme and added substrates. ATP and KF prolonged the linearity of the activity with time, but ATP had an overall inhibitory effect on the sulphotransferase. Both ATP and KF inhibit the degradation of adenosine 3′-phosphate 5′-sulphatophosphate, which probably causes the increased linearity of the sulphotransferase reaction with time. The enzyme preparation did not catalyse the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate to either cholesterol or galabiosyldiacylglycerol (galactosylgalactosyldiacylglycerol). Significant differences between the formation of sulphogalactosyldiacylglycerol and cerebroside sulphate catalysed by the same enzyme preparation were noted. ATP and Mg2+ strongly inhibit the formation of sulphogalactosyldiacylglycerol but equally strongly stimulate the synthesis of cerebroside sulphate. The apparent Km for galactosyldiacylglycerol is 200μm, and that for cerebroside is 45μm. Galactosyldiacylglycerol and cerebroside are mutually inhibitory toward the synthesis of sulphated derivatives of each. These data do not necessarily lead to the conclusion that two sulphotransferases are present, but they do indicate a possible means of controlling the synthesis of these two sulpholipids.


1999 ◽  
Vol 338 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Theresa M. FILTZ ◽  
Michelle L. CUNNINGHAM ◽  
Kara J. STANIG ◽  
Andrew PATERSON ◽  
T. Kendall HARDEN

The potential role of protein kinase C (PKC)-promoted phosphorylation has been examined in the G-protein-regulated inositol lipid signalling pathway. Incubation of [32P]Pi-labelled turkey erythrocytes with either the P2Y1 receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) or with PMA resulted in a marked increase in incorporation of 32P into the G-protein-activated phospholipase C PLC-βT. Purified PLC-βT also was phosphorylated by PKC in vitro to a stoichiometry (mean±S.E.M.) of 1.06±0.2 mol of phosphate/mol of PLC-βT. Phosphorylation by PKC was isoenzyme-specific because, under identical conditions, mammalian PLC-β2 also was phosphorylated to a stoichiometry near unity, whereas mammalian PLC-β1 was not phosphorylated by PKC. The effects of PKC-promoted phosphorylation on enzyme activity were assessed by reconstituting purified PLC-βT with turkey erythrocyte membranes devoid of endogenous PLC activity. Phosphorylation resulted in a decrease in basal activity, AlF4--stimulated activity, and activity stimulated by 2MeSATP plus guanosine 5´-[γ-thio]triphosphate in the reconstituted membranes. The decreases in enzyme activities were proportional to the extent of PKC-promoted phosphorylation. Catalytic activity assessed by using mixed detergent/phospholipid micelles also was decreased by up to 60% by phosphorylation. The effect of phosphorylation on Gqα-stimulated PLC-βT in reconstitution experiments with purified proteins was not greater than that observed on basal activity alone. Taken together, these results illustrate that PKC phosphorylates PLC-βT in vivo and to a physiologically relevant stoichiometry in vitro. Phosphorylation is accompanied by a concomitant loss of enzyme activity, reflected as a decrease in overall catalytic activity rather than as a specific modification of G-protein-regulated activity.


2010 ◽  
Vol 192 (20) ◽  
pp. 5341-5349 ◽  
Author(s):  
Maria Karatsa-Dodgson ◽  
Mirka E. Wörmann ◽  
Angelika Gründling

ABSTRACT Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria. The key enzyme responsible for polyglycerolphosphate lipoteichoic acid synthesis in the Gram-positive pathogen Staphylococcus aureus is the membrane-embedded lipoteichoic acid synthase enzyme, LtaS. It is presumed that LtaS hydrolyzes the glycerolphosphate head group of the membrane lipid phosphatidylglycerol (PG) and catalyzes the formation of the polyglycerolphosphate LTA backbone chain. Here we describe an in vitro assay for this new class of enzyme using PG with a fluorescently labeled fatty acid chain (NBD-PG) as the substrate and the recombinant soluble C-terminal enzymatic domain of LtaS (eLtaS). Thin-layer chromatography and mass spectrometry analysis of the lipid reaction products revealed that eLtaS is sufficient to cleave the glycerolphosphate head group from NBD-PG, resulting in the formation of NBD-diacylglycerol. An excess of soluble glycerolphosphate could not compete with the hydrolysis of the fluorescently labeled PG lipid substrate, in contrast to the addition of unlabeled PG. This indicates that the enzyme recognizes and binds other parts of the lipid substrate, besides the glycerolphosphate head group. Furthermore, eLtaS activity was Mn2+ ion dependent; Mg2+ and Ca2+ supported only weak enzyme activity. Addition of Zn2+ or EDTA inhibited enzyme activity even in the presence of Mn2+. The pH optimum of the enzyme was 6.5, characteristic for an enzyme that functions extracellularly. Lastly, we show that the in vitro assay can be used to study the enzyme activities of other members of the lipoteichoic acid synthase enzyme family.


Sign in / Sign up

Export Citation Format

Share Document