scholarly journals Unique molecular species of phosphatidylcholine containing very-long-chain (C24-C38) polyenoic fatty acids in rat brain

1990 ◽  
Vol 265 (3) ◽  
pp. 763-767 ◽  
Author(s):  
B S Robinson ◽  
D W Johnson ◽  
A Poulos

Rat brain has been shown to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38. These fatty acids are almost exclusively located in unusual molecular species of phosphatidylcholine at the sn-1 position of the glycerol backbone, whereas saturated, monoenoic and polyenoic fatty acids with less than 24 carbon atoms are present at the sn-2 position. Polyenoic VLCFA phosphatidylcholine in neonatal rat brain is enriched with n-6 pentaenoic and n-3 hexaenoic VLCFA with up to 36 carbon atoms, whereas the corresponding phospholipid in adult rat brain mainly contains n-6 tetraenoic and n-3 pentaenoic VLCFA with up to 38 carbon atoms. The total amount of polyenoic VLCFA associated with phosphatidylcholine is highest in the brain of immature animals. Polyenoic VLCFA phosphatidylcholine appears to be predominantly confined to nervous tissue in rats, and it is envisaged that this phospholipid is of physiological significance.

1990 ◽  
Vol 267 (2) ◽  
pp. 561-564 ◽  
Author(s):  
B S Robinson ◽  
D W Johnson ◽  
A Poulos

Rat brain was recently found to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38 [Robinson, Johnson & Poulos (1990) Biochem. J. 265, 763-767]. In the present paper, the metabolism in vivo of hexacosatetraenoic acid (C26:4,n-6) was studied in neonatal rat brain. Rats were injected intracerebrally with [1-14C]C26:4,n-6 and the labelled metabolites were examined after 4 h. Radioactivity was detected mainly in non-esterified fatty acids, with smaller amounts in other neutral lipids and phospholipids. Radiolabelled fatty acid products included C28-36 tetraenoic and C26-28 pentaenoic VLCFA formed by elongation and desaturation of the substrate, and C14-24 saturated, C16-24 monoenoic, C18-24 dienoic, C18-22 trienoic and C20-24 tetraenoic fatty acids formed from released [1-14C]acetate either by synthesis de novo or by elongation of endogenous fatty acids. The data suggest that polyenoic VLCFA are synthesized in brain from shorter-chain precursor fatty acids and undergo beta-oxidation.


1988 ◽  
Vol 253 (3) ◽  
pp. 645-650 ◽  
Author(s):  
A Poulos ◽  
P Sharp ◽  
D Johnson ◽  
C Easton

The n-6 tetra- and pentaenoic fatty acids with carbon chain lengths greater than 32 found in normal brain are located predominantly in a separable species of phosphatidylcholine. A similar phospholipid is found in increased amounts in the brain of peroxisome-deficient (Zellweger's syndrome) patients, but the fatty acid composition differs in that penta- and hexaenoic derivatives predominate. Our data strongly suggest that the polyenoic very long chain fatty acids are confined to the sn-1 position of the glycerol moiety, while the sn-2 position is enriched in saturated, monounsaturated and polyunsaturated fatty acids with less than 24 carbon atoms. It is postulated that these unusual molecular species of phosphatidylcholine may play some, as yet undefined, role in brain physiology.


1975 ◽  
Vol 25 (2) ◽  
pp. 185-186 ◽  
Author(s):  
A. Lastennet ◽  
L. Freysz ◽  
P. Mandel

1987 ◽  
Vol 248 (3) ◽  
pp. 961-964 ◽  
Author(s):  
A Poulos ◽  
D W Johnson ◽  
K Beckman ◽  
I G White ◽  
C Easton

The high levels of very long chain fatty acids found in ram spermatozoa are located almost exclusively in one of two separable species of sphingomyelin. Mass spectral analysis, including fast atom bombardment of the purified sphingomyelin, has shown the fatty acids to have a carbon chain length of between 28 and 34, with between four and six double bonds, and to belong predominantly to the n-3 series.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tie-Mei Li ◽  
John P. Coan ◽  
Krzysztof Krajewski ◽  
Lichao Zhang ◽  
Joshua E. Elias ◽  
...  

Abstract Covalent post-translational modification (PTM) of proteins with acyl groups of various carbon chain-lengths regulates diverse biological processes ranging from chromatin dynamics to subcellular localization. While the YEATS domain has been found to be a prominent reader of acetylation and other short acyl modifications, whether additional acyl-lysine reader domains exist, particularly for longer carbon chains, is unclear. Here, we employed a quantitative proteomic approach using various modified peptide baits to identify reader proteins of various acyl modifications. We discovered that proteins harboring HEAT and ARM repeats bind to lysine myristoylated peptides. Recombinant HEAT and ARM repeats bind to myristoylated peptides independent of the peptide sequence or the position of the myristoyl group. Indeed, HEAT and ARM repeats bind directly to medium- and long-chain free fatty acids (MCFA and LCFA). Lipidomic experiments suggest that MCFAs and LCFAs interact with HEAT and ARM repeat proteins in mammalian cells. Finally, treatment of cells with exogenous MCFAs and inhibitors of MCFA-CoA synthases increase the transactivation activity of the ARM repeat protein β-catenin. Taken together, our results suggest an unappreciated role for fatty acids in the regulation of proteins harboring HEAT or ARM repeats.


Sign in / Sign up

Export Citation Format

Share Document