scholarly journals Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in the brain

1990 ◽  
Vol 266 (1) ◽  
pp. 133-139 ◽  
Author(s):  
R S Badar-Goffer ◽  
H S Bachelard ◽  
P G Morris

The time courses of incorporation of 13C from 13C-labelled glucose or acetate into cerebral amino acids (glutamate, glutamine and 4-aminobutyrate) and lactate were monitored by using 13C-n.m.r. spectroscopy. When [1-13C]glucose was used as precursor the C-2 of 4-aminobutyrate was more highly labelled than the analogous C-4 of glutamate, whereas no label was observed in glutamine. A similar pattern was observed with [2-13C]glucose: the C-1 of 4-aminobutyrate was more highly labelled than the analogous C-5 of glutamate. Again, no labelling of glutamine was detected. In contrast, [2-13C]acetate labelled the C-4 of glutamine and the C-2 of 4-aminobutyrate more highly than the C-4 of glutamate; [1-13C]acetate also labelled the C-1 and C-5 positions of glutamine more than the analogous positions of glutamate. These results are consistent with earlier patterns reported from the use of 14C-labelled precursors that led to the concept of compartmentation of neuronal and glial metabolism and now provide the possibility of distinguishing differential effects of metabolic perturbations on the two pools simultaneously. An unexpected observation was that citrate is more highly labelled from acetate than from glucose.

2019 ◽  
Author(s):  
Kylie Kavanagh ◽  
Stephen M. Day ◽  
Morgan C. Pait ◽  
William R. Mortiz ◽  
Christopher B. Newgard ◽  
...  

AbstractEpidemiological studies suggest that individuals with type 2 diabetes (T2D) have a 2-4 fold increased risk for developing Alzheimer’s disease (AD), however the exact mechanisms linking the two disease is unknown. In both conditions, the majority of pathophysiological changes (including glucose and insulin dysregulation, insulin resistance, and AD-related changes in Aβ and tau) occur decades before the onset of clinical symptoms and diagnosis. In this study, we investigated the relationship between metabolic biomarkers associated with T2D and AD-related pathology, including Aβ levels, from cerebrospinal fluid (CSF) and fasting plasma of healthy, prediabetic (PreD), and T2D vervet monkeys (Chlorocebus aethiops sabeus). Consistent with the human disease, T2D monkeys have increased plasma and CSF glucose levels as they transition from normoglycemia to pre-diabetic and diabetic states. Although plasma levels of acylcarnitines and amino acids remained largely unchanged, peripheral hyperglycemia correlated with decreased CSF acylcarnitines and CSF amino acids, including branched chain amino acid (BCAA) concentrations, suggesting profound changes in cerebral metabolism coincident with systemic glucose dysregulation. Moreover, CSF Aβ40 and CSF Aβ42 levels decreased in T2D monkeys, a phenomenon observed in the human course of AD which coincides with increased amyloid deposition within the brain. In agreement with our previous studies in mice, CSF Aβ40 and CSF Aβ42 were highly correlated with CSF glucose levels, suggesting that glucose levels in the brain are associated with changes in Aβ metabolism. Interestingly, CSF Aβ40 and CSF Aβ42 levels were also highly correlated with plasma but not CSF lactate levels, suggesting that plasma lactate might serve as a potential biomarker of disease progression in AD. Moreover, CSF glucose and plasma lactate levels were correlated with CSF amino acid and acylcarnitine levels, demonstrating alterations in cerebral metabolism occurring with the onset of T2D. Together, these data suggest that peripheral metabolic changes associated with the development of T2D produce alterations in brain metabolism that lead to early changes in the amyloid cascade, similar to those observed in pre-symptomatic AD.


1988 ◽  
Vol 66 (5) ◽  
pp. 683-688 ◽  
Author(s):  
Karen L. Teff ◽  
Simon N. Young

We compared the acute effects of intragastric administration of protein and carbohydrate on tryptophan and 5-hydroxytryptamine (5HT) in rat brain, pineal, intestine, and pancreas. Protein decreased and carbohydrate increased brain indoles relative to water-infused controls. These effects were due to competition between the large neutral amino acids for entry into the brain. This competition does not exist in the pineal. The macronutrients had no effect on pineal tryptophan metabolism. In the intestine, protein resulted in higher tryptophan levels as compared to controls, owing to absorption of tryptophan in the protein. However intestinal 5HT levels were influenced by factors other than precursor availability. Pancreatic indoles were affected in a similar manner to the brain indoles. Competition between the large neutral amino acids for entry into the pancreas was also indicated by the finding that valine administration lowered brain and pancreatic tryptophan, but not the levels in the intestine and pineal. It remains to be seen whether the decrease in pancreatic 5HT after a protein meal and the increase after carbohydrate modulate the release of insulin and glucagon.


1962 ◽  
Vol 9 (5) ◽  
pp. 493-501 ◽  
Author(s):  
Sidney Roberts ◽  
Katsuo Seto ◽  
B. H. Hanking

1966 ◽  
Vol 101 (3) ◽  
pp. 591-597 ◽  
Author(s):  
R M O'Neal ◽  
R E Koeppe ◽  
E I Williams

1. Free glutamic acid, aspartic acid, glutamic acid from glutamine and, in some instances, the glutamic acid from glutathione and the aspartic acid from N-acetyl-aspartic acid were isolated from the brains of sheep and assayed for radioactivity after intravenous injection of [2-(14)C]glucose, [1-(14)C]acetate, [1-(14)C]butyrate or [2-(14)C]propionate. These brain components were also isolated and analysed from rats that had been given [2-(14)C]propionate. The results indicate that, as in rat brain, glucose is by far the best precursor of the free amino acids of sheep brain. 2. Degradation of the glutamate of brain yielded labelling patterns consistent with the proposal that the major route of pyruvate metabolism in brain is via acetyl-CoA, and that the short-chain fatty acids enter the brain without prior metabolism by other tissue and are metabolized in brain via the tricarboxylic acid cycle. 3. When labelled glucose was used as a precursor, glutamate always had a higher specific activity than glutamine; when labelled fatty acids were used, the reverse was true. These findings add support and complexity to the concept of the metabolic; compartmentation' of the free amino acids of brain. 4. The results from experiments with labelled propionate strongly suggest that brain metabolizes propionate via succinate and that this metabolic route may be a limited but important source of dicarboxylic acids in the brain.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008418
Author(s):  
Thomas F. Varley ◽  
Olaf Sporns ◽  
Aina Puce ◽  
John Beggs

Whether the brain operates at a critical “tipping” point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as “dissociative anaesthesia”). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness.


Sign in / Sign up

Export Citation Format

Share Document