scholarly journals Mammary development and milk secretion in transgenic mice expressing the sheep β-lactoglobulin gene

1992 ◽  
Vol 284 (3) ◽  
pp. 717-720 ◽  
Author(s):  
C J Wilde ◽  
A J Clark ◽  
M A Kerr ◽  
C H Knight ◽  
M McClenaghan ◽  
...  

Mammary development and milk secretion were studied in transgenic mice which exhibited mammary tissue-specific expression of the sheep beta-lactoglobulin gene, and secreted significant quantities of the foreign protein in milk. Mammary development was unaffected by transgenesis. Tissue DNA content and the activities of several key enzyme markers of cell differentiation were similar in transgenic mice and non-transgenic controls. Milk yield, whether estimated by pup weight gain or measured by a 3H2O-dilution method, was unchanged by foreign gene expression. Gross milk composition, including milk protein concentration, was also similar in transgenic and non-transgenic animals, even though beta-lactoglobulin accounted for 29% of total milk protein. Therefore the foreign gene product was synthesized at the expense of endogenous milk proteins. However, transgenic mammary tissue in vitro exhibited a significantly higher rate of total protein synthesis than did control tissue. This suggested that a factor limiting milk protein synthesis or secretion in transgenic mice in vivo may have been removed by short-term explant culture of mammary tissue. The results emphasize that the use of transgenesis for manipulating milk composition may depend not only on high-level mammary-specific expression of the foreign gene, but also on the biosynthetic capacity of the mammary gland itself.

Author(s):  
C H Knight

The aim of this review is to assess to what extent the biological processes of milk protein synthesis and secretion might be manipulated to the benefit of the milk producer, processor and consumer. There is considerable impetus for such an analysis. A completely new ‘agroceutical’ industry is in prospect, utilising novel biotechnology to produce high-value, non-mammary proteins in the milk of transgenic dairy animals (Carver et al., 1993). Nearer to home, the milk processing industry and the consumer may wish to see more modest modification of endogenous milk proteins, making use of naturally occurring genetic variants or, again, using biotechnological approaches (Dalgleish, 1992). Exciting as such possibilites are, I intend to set them to one side and concentrate on the issue that most immediately concerns the dairy farmer: how can he increase his milk protein concentration and, thereby, his profitability. Retrospective analysis reveals some small scope for improvement; between 1985 and 1990, compositional quality data (the basis for milk payment) revealed an increase in protein content from 32.6 to 32.8 g/1, an improvement of 0.6%. Over the same period, milk fat increased by 3.1% and recorded milk yields by 6.4% (all data from UK Dairy Facts and Figures, Federation of United Kingdom Milk Marketing Boards), suggesting that protein content is least amenable to manipulation. Gross production figures of this sort can be misleading, but more controlled experimentation supports the contention. By reducing the forage to concentrate ratio, Rook et al. (1992) increased total protein yield by an impressive 200 g/d. However, only one-quarter of this effect was due to improved protein content, the remainder coming from increased milk yield. Endocrine manipulation of milk production gives a similarly discouraging picture. Growth hormone treatment undoubtedly increases protein yield, but it does so by increasing the volume of milk produced with no detectable effect on protein content (Bauman, 1992). Milk production is also responsive to milking frequency but, once again, the effect is on yield of milk rather than on the protein content of that milk (Hillerton et al., 1990). So, where is the silver lining? Does biotechnology have the answer; can the presence, in mammary cells, of extra copies of correctly expressed milk protein or foreign protein genes markedly increase protein content? In Edinburgh, transgenic sheep are producing milk containing as much as 30 g/1 of human alpha- 1-antitrypsin (Carver et al.. 1993), representing some 50% or the total protein content (Wright et al., 1991). There is good anecdotal reason for believing that total protein content is elevated (one sheep reached 70 g/1), but the definitive statistical analysis is, so far, lacking. We have examined mammary function in transgenic mice expressing the sheep beta-lactoglobulin gene and compared them with non-transgenic controls (Wilde et al.,1992). Expression was good: beta-lactoglobulin accounted for 30% of all the protein present. But, at 95 and 106 mg/ml. respectively, transgenic mouse milk contained no more total protein than that of control mice. The encouraging feature of this work was that mammary tissue from transgenic mice cultured in vitro synthesised 41 % more total protein than did tissue from control mice, a significant difference (P ˂ 0.05).It would appear that the tissue itself had the intrinsic capability for increased protein synthesis, but a block or some sort was imposed in vivo. The next step is to discover the nature of that block, and to do so we must understand the complex series of events leading ultimately to protein secretion into the alveolar lumen.


2006 ◽  
Vol 82 (3) ◽  
pp. 351-354 ◽  
Author(s):  
M. E. Pero ◽  
N. Mirabella ◽  
P. Lombardi ◽  
C. Squillacioti ◽  
A. De Luca ◽  
...  

AbstractIn the present study, the rôle of gammaglutamyltransferase (GGT) during lactation has been investigated in the water buffalo. GGT activity has been evaluated in the mammary tissue at 4 and 6 months after calving and during the non-lactating period. The highest GGT activity levels were found at day 120 (32·57±7·41 U per g) of lactation and were statistically higher than those at 180 (10·76±3·6 U per g) or during the non-lactating period (9·86±7·94 U per g). Histochemistry confirmed these findings and revealed that GGT reactivity was distributed throughout the cytoplasm of alveolar epithelial cells. Such results showed that the GGT production is high during lactation thus supporting the hypothesis that this enzyme plays a rôle in determining milk production in water buffalo by supporting milk protein synthesis.


2002 ◽  
Vol 69 (2) ◽  
pp. 205-212 ◽  
Author(s):  
CLAUS T. CHRISTOPHERSEN ◽  
JAKOB KARLSEN ◽  
METTE O. NIELSEN ◽  
BENT RIIS

The amount of protein synthesis translational elongation factor 2 (eEF-2) was estimated employing diphtheria toxin-dependent ADP-ribosylation in samples prepared from small amounts of tissue from mammary gland, skeletal muscle and liver from lactating dairy cows. A very high level of ADP-ribosylatable eEF-2 was found in mammary gland, amounting to 20-times the level found in liver and 50-times the level found in skeletal muscle. This obviously reflects the high protein synthesis activity in mammary tissue. To our knowledge, similar high activities have previously been reported only for cancer cells. A close linear relationship was found between the amount of diphtheria-toxin catalysed ADP-ribosylated eEF-2 and protein and casein output in milk from cows in late lactation. This strongly suggests that eEF-2 may be a limiting factor in milk protein synthesis.


Gene ◽  
1995 ◽  
Vol 165 (2) ◽  
pp. 291-296 ◽  
Author(s):  
Marie-Annick Persuy ◽  
Sophie Legrain ◽  
Christiane Printz ◽  
Marie-Georges Stinnakre ◽  
Laurence Lepourry ◽  
...  

2009 ◽  
Vol 21 (4) ◽  
pp. 549 ◽  
Author(s):  
Laura J. Parry ◽  
Lenka A. Vodstrcil ◽  
Anna Madden ◽  
Stephanie H. Amir ◽  
Katrina Baldwin ◽  
...  

Pups born to mice with a targeted deletion of relaxin or its receptor (Rxfp1) die within 24 h postpartum. This has been attributed, in part, to abnormal mammary gland development in relaxin-mutant mice (Rln–/–). However, mammary development is normal in relaxin receptor-mutant (Rxfp1–/–) mice. The present study aimed to verify the mammary phenotypes in late pregnant and early lactating Rln–/– mice and to test the hypothesis that relaxin is involved in milk protein synthesis. Comparisons between late pregnant and early lactating wildtype (Rln+/+) and Rln–/– mice showed no differences in lobuloalveolar structure or ductal branching in the mammary gland. Mammary explants from Rln–/– mice also expressed β-casein and α-lactalbumin in response to lactogenic hormones at a similar level to Rln+/+ mice, implying normal milk protein synthesis. Pregnant Rln–/– mice infused with relaxin for 6 days gave birth to live pups without difficulty, and 96% of pups survived beyond 7 days. This is in contrast with the 100% pup mortality in saline-treated Rln–/– mice or 3-day relaxin-treated Rln–/– mice. Pups born to relaxin-treated Rln–/– dams weighed significantly less than Rln+/+ pups but had similar growth rates as their wildtype counterparts. In summary, relaxin is not critical for mammary gland development or β-casein and α-lactalbumin expression in late pregnant mice. In addition, Rln–/– dams did not need to be treated with relaxin postpartum for the pups to survive, suggesting that relaxin has no role in the maintenance of lactation in mice.


2019 ◽  
Vol 51 (8) ◽  
pp. 400-409 ◽  
Author(s):  
S. T. Gao ◽  
Lu Ma ◽  
Z. Zhou ◽  
Z. K. Zhou ◽  
L. H. Baumgard ◽  
...  

Inadequate dry matter intake only partially accounts for the decrease in milk protein synthesis during heat stress (HS) in dairy cows. Our hypothesis is that reduced milk protein synthesis during HS in dairy cows is also caused by biological changes within the mammary gland. The objective of this study was to assess the hypothesis via RNA-Seq analysis of mammary tissue. Herein, four dairy cows were used in a crossover design where HS was induced for 9 days in environmental chambers. There was a 30-day washout between periods. Mammary tissue was collected via biopsy at the end of each environmental period (HS or pair-fed and thermal neutral) for transcriptomic analysis. RNA-Seq analysis revealed HS affected >2,777 genes (false discovery rate-adjusted P value < 0.05) in mammary tissue. Expression of main milk protein-encoding genes and several key genes related to regulation of protein synthesis and amino acid and glucose transport were downregulated by HS. Bioinformatics analysis revealed an overall decrease of mammary tissue metabolic activity by HS (especially carbohydrate and lipid metabolism) and an increase in immune activation and inflammation. Network analysis revealed a major role of TNF, IFNG, S100A8, S100A9, and IGF-1 in inducing/controlling the inflammatory response, with a central role of NF-κB in the process of immunoactivation. The same analysis indicated an overall inhibition of PPARγ. Collectively, these data suggest HS directly controls milk protein synthesis via reducing the transcription of metabolic-related genes and increasing inflammation-related genes.


Sign in / Sign up

Export Citation Format

Share Document