scholarly journals Kinetics of enzymes with iso-mechanisms: analysis of product inhibition

1993 ◽  
Vol 296 (2) ◽  
pp. 355-360 ◽  
Author(s):  
K L Rebholz ◽  
D B Northrop

Isomerizations of free enzyme can be detected in kinetic patterns of product inhibition when the isomerization is partially rate-limiting. The kinetic pattern is non-competitive, owing to binding of substrate and product to different forms of free enzyme. This adds an additional term to the rate equation, sometimes represented as KSP. Several kineticists have noted that, as the rate of isomerization becomes high in relation to catalytic turnover, the intercept effect will become small, KSP will approach infinity, and the pattern will look competitive. Britton [(1973) Biochem. J. 133, 255-261] asserted that KSP will also approach infinity when the rate of isomerization becomes low. This second assertion is incorrect and can be traced to the particular model and graphical representation used to examine KSP as a function of relative rate constants. The function portrayed as a parabola with two roots for KSP is, instead, a straight line with one root. The algebraic condition justifying the second root obtains in the limit of zero in the rate of reaction and thus is not experimentally relevant, and the appearance of competitive inhibition, based on KSP alone, is not valid. Using a more general model, new equations are derived and presented which provide direct calculations of the apparent rate constants for free enzyme isomerizations from product-inhibition data when the equilibrium of the isomerization is near 1, and useful limits for the rate constants when greater than or less than 1.

1969 ◽  
Vol 22 (6) ◽  
pp. 1177 ◽  
Author(s):  
DS Caines ◽  
RB Paton ◽  
DA Williams ◽  
PR Wilkinson

Liquid 1,2-dichloroethane has been chlorinated by dissolved chlorine to a succession of chloroethanes up to the ultimate hexachloroethane. The results of both batch and continuous stirred tank reactor systems have been analysed by computer techniques to give a set of relative rate constants from which one can predict the product composition for a given chlorine uptake, the aim in this work being to optimize the production of tetrachloroethanes. An unusual feature of the kinetics is that 1,1,1,2- and 1,1,2,2-tetrachloroethanes provide alternative pathways between 1,1,2-trichloroethane and pentachloroethane.


1996 ◽  
Vol 03 (01) ◽  
pp. 655-660 ◽  
Author(s):  
B. PLASTRIDGE ◽  
K.A. COWEN ◽  
D.A. WOOD ◽  
M.H. COHEN ◽  
J.V. COE

A new method for studying cluster-cluster interactions is introduced which involves merging mass-selected beams of oppositely charged cluster ions with an electrostatic quadrupole deflector. Recombination is monitored by measuring the rate of fast neutral production. Relative rate constants have been measured for the reaction of H 3O+( H 2 O )n+ OH −( H 2 O )m as a function of cluster size (m=n=0–3), which display a pronounced enhancement with clustering. Relative rate constants have also been measured as a function of center-of-mass collision energy for a heavily clustered reaction (n=3, m=3) and a lightly clustered reaction (n=1, m=0) revealing that clustering produces a dramatic change in the reaction mechanism.


1960 ◽  
Vol 38 (11) ◽  
pp. 2187-2195 ◽  
Author(s):  
R. J. Cvetanović ◽  
L. C. Doyle

Reaction of oxygen atoms with 1,3-butadiene has been investigated at room temperature. It is found that it conforms to the general mechanism established previously for the analogous reactions of monoolefins. Only 1,2-addition occurs, and the addition products, butadiene monoxide and 3-butenal, possess excess energy when formed as a result of high heats of reaction. The pressure dependence of the formation of the addition products yields the values of the "lifetimes" of the initially produced "hot" molecules. The relative rate constants have been determined at 25 and 127 °C and from these the relative values of the Arrhenius parameters have been calculated.


1974 ◽  
Vol 29 (4) ◽  
pp. 642-649 ◽  
Author(s):  
R. Laupert ◽  
G. von Bünau

The reactions of atomic hydrogen with propene, butene-2, and trimethylethylene, and with mixtures of these olefins with ethylene have been studied using flow apparatus. It was found that under the experimental conditions intermediate alkyl radicals reacted practically only with atomic hydrogen. This made possible a kinetic evaluation of the results yielding numerical values of several relative rate constants of competing intermediate reactions.


1972 ◽  
Vol 50 (19) ◽  
pp. 3239-3241 ◽  
Author(s):  
R. A. Cox ◽  
J. W. Thorpe ◽  
J. Warkentin

The ratio of rate constants for exchange at the methylene and methyl positions of butanone, [Formula: see text], is shown to be near 1.69 in 1:1 acetic acid–acetate buffer; nearly twice the value (0.86) for deuterioxide catalysis at 54.8°. Methods of obtaining rate constants for acetate catalysis from composite rates (acetate and deuterioxide), or from rates in buffered media, are shown to be adequate for estimating rate ratios.Detailed temperature dependence of the relative rate constants for either system is not yet available but the effects are known to be small. For butanone enolizations the isokinetic temperature is in the neighborhood of 35°, when reaction is catalyzed by deuterioxide in aqueous media.


Sign in / Sign up

Export Citation Format

Share Document