scholarly journals Properties of chicken erythrocyte histone deacetylase associated with the nuclear matrix

1996 ◽  
Vol 314 (2) ◽  
pp. 631-637 ◽  
Author(s):  
Wei LI ◽  
Hou Yu CHEN ◽  
James R. DAVIE

Histone H2B is deacetylated more rapidly than H3 and H4 in chicken immature erythrocytes. Histone deacetylase from chicken immature erythrocytes was partially purified, and the histone specificities of the multiple histone deacetylase forms were determined. Ion-exchange (Q-Sepharose) and gel-exclusion (Superdex 200) chromatography of extracts from erythrocyte nuclei showed two forms (HD1 and HD2) of histone deacetylase. HD1, with a molecular mass of about 55 kDa, preferred free H3–H4 relative to H2A–H2B, while HD2, with a molecular mass of approx. 220 kDa, had a slight preference for H3–H4. HD1 and HD2 differed in pH- and ionic-strength-dependence. HD2 dissociated into HD1 when treated with 1.6 M NaCl or when applied to a Q-Sepharose column. The enzymic properties of nuclear-matrix-bound histone deacetylase showed a striking difference from that of HD1 and HD2, particularly in its strong preference for H2A–H2B. Treatment of the nuclear matrix with 1.6 M NaCl and 1% 2-mercaptoethanol solubilized histone deacetylase, which chromatographed as 400 and 220 kDa forms on a Superdex 200 column. The solubilized enzyme retained its histone preference for H2A-H2B. Chromatography of the nuclear-matrix-derived enzyme on Q-Sepharose yielded one peak of enzyme activity with chromatographic properties and histone specificities similar to those of HD1. These results provide support for the active form of the enzyme in situ being a high-molecular-mass complex associated with proteins that are components of the nuclear matrix. Substrate preference of the enzyme is governed by the proteins associated with the histone deacetylase.

1992 ◽  
Vol 98 (1) ◽  
pp. 19-32 ◽  
Author(s):  
L. M. Neri ◽  
G. Mazzotti ◽  
S. Capitani ◽  
N. M. Maraldi ◽  
C. Cinti ◽  
...  
Keyword(s):  

Author(s):  
F. Thoma ◽  
TH. Koller

Under a variety of electron microscope specimen preparation techniques different forms of chromatin appearance can be distinguished: beads-on-a-string, a 100 Å nucleofilament, a 250 Å fiber and a compact 300 to 500 Å fiber.Using a standardized specimen preparation technique we wanted to find out whether there is any relation between these different forms of chromatin or not. We show that with increasing ionic strength a chromatin fiber consisting of a row of nucleo- somes progressively folds up into a solenoid-like structure with a diameter of about 300 Å.For the preparation of chromatin for electron microscopy the avoidance of stretching artifacts during adsorption to the carbon supports is of utmost importance. The samples are fixed with 0.1% glutaraldehyde at 4°C for at least 12 hrs. The material was usually examined between 24 and 48 hrs after the onset of fixation.


2000 ◽  
Vol 182 (9) ◽  
pp. 2604-2610 ◽  
Author(s):  
Gillian Newman ◽  
Elliott Crooke

ABSTRACT Given the lack of a nucleus in prokaryotic cells, the significance of spatial organization in bacterial chromosome replication is only beginning to be fully appreciated. DnaA protein, the initiator of chromosomal replication in Escherichia coli, is purified as a soluble protein, and in vitro it efficiently initiates replication of minichromosomes in membrane-free DNA synthesis reactions. However, its conversion from a replicatively inactive to an active form in vitro occurs through its association with acidic phospholipids in a lipid bilayer. To determine whether the in situ residence of DnaA protein is cytoplasmic, membrane associated, or both, we examined the cellular location of DnaA using immunogold cryothin-section electron microscopy and immunofluorescence. Both of these methods revealed that DnaA is localized at the cell membrane, further suggesting that initiation of chromosomal replication in E. coli is a membrane-affiliated event.


2003 ◽  
Vol 07 (03) ◽  
pp. 139-146 ◽  
Author(s):  
Peter Hambright ◽  
Ines Batinić-Haberle ◽  
Ivan Spasojević

The relative reactivities of the tetrakis( N -alkylpyridinium- X - yl )-porphyrins where X = 4 (alkyl = methyl, ethyl, n -propyl) , X = 3 (methyl) , and X = 2 (methyl, ethyl, n -propyl, n -butyl, n -hexyl, n -octyl) were studied in aqueous solution. From the ionic strength dependence of the metalation rate constants, the effective charge of a particular cationic porphyrin was usually larger when copper(II) rather than zinc(II) was the reactant. The kinetics of ZnOH + incorporation and the acid catalyzed removal of zinc from the porphyrins in 1.0 M HCl were also studied. In general, the more basic 4- (para-) and 3- (meta-) isomers were the most reactive, followed by the less basic 2- (ortho-) methyl to n -butyl derivatives, with the lipophilic ortho n -hexyl and n -octyl porphyrins the least reactive.


2004 ◽  
Vol 49 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Francesco Crea ◽  
Concetta De Stefano ◽  
Ottavia Giuffrè ◽  
Silvio Sammartano

1993 ◽  
Vol 105 (4) ◽  
pp. 1121-1130 ◽  
Author(s):  
S. Lang ◽  
T. Decristoforo ◽  
W. Waitz ◽  
P. Loidl

We have investigated biochemical and ultrastructural aspects of the nuclear matrix during the naturally synchronous cell cycle of Physarum polycephalum. The morphology of the in situ nuclear matrix exhibited significant cell cycle changes as revealed by electron microscopic examination, especially during the progression of nuclei through mitosis and S-phase. In mitosis the interchromatin matrix was found to be retracted to the nuclear periphery; during S-phase this interchromatin matrix gradually resembled, concomitant with the reconstruction of a nucleolar remnant structure. During the G2-period no significant changes in matrix morphology were observed. The pattern of nuclear matrix proteins was invariant during the cell cycle; no cycle phase-specific proteins could be detected. In vivo labelling of plasmodia with [35S]methionine/cysteine showed that only a few proteins are synthesized and assembled into nuclear matrix structures in a cell cycle-dependent way; the majority of proteins were synthesized almost continuously. This was also shown for nuclear lamins homologues. In contrast to bulk nuclear histones, those histones that remain tightly bound to the nuclear matrix were synthesized and assembled into nuclear structures in the very first hour of S-phase; assembly was terminated in mid-S-phase, indicating that nuclear matrix-bound chromatin is replicated early in S-phase. Comparison of the acetylation pattern of matrix-bound histone H4 with bulk nuclear H4 revealed a largely elevated acetate content of matrix H4. The percentage of acetylated subspecies was entirely different from that in bulk nuclear H4, indicating that matrix-associated histones represent a subpopulation of nuclear histones with distinct properties, reflecting specific structural requirements of matrix-attached chromatin.


2001 ◽  
Vol 93 (1-2) ◽  
pp. 135-136 ◽  
Author(s):  
U. Mahlknecht ◽  
S. Schnittger ◽  
F. Landgraf ◽  
C. Schoch ◽  
O.G. Ottmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document