scholarly journals An uncleaved glycosylphosphatidylinositol signal mediates Ca2+-sensitive protein degradation

1996 ◽  
Vol 317 (2) ◽  
pp. 533-540
Author(s):  
Peter C. PAULY ◽  
Claudette KLEIN

Inv-gp80 is a chimeric protein which contains a signal for the attachment of a glycosylphosphatidylinositol (GPI) anchor. When expressed in Dictyostelium discoideum, this protein fails to become GPI anchored and is retained within the cell as an integral membrane protein. We have compared the subcellular localization and degradation of Inv-gp80 with that of its intracellular but soluble counterpart, Inv-gp80sc. Inv-gp80sc lacks the hydrophobic C-terminal 22 amino acids of Inv-gp80. The N-linked oligosaccharides of both Inv-gp80 and Inv-gp80sc remained sensitive to endoglycosidase H, and both proteins co-fractionated with endoplasmic reticulum marker enzymes on Percoll gradients. Under normal conditions, Inv-gp80 displayed a half-life (t½) of 90 min, while Inv-gp80sc displayed a t½ of 120 min. The degradation of both proteins required ATP, was inhibited by tosyl phenylalanylchloromethane (Tos-Phe-CH2Cl) and was insensitive to inhibitors of lysosomal function. While depletion of Ca2+ from the endoplasmic reticulum had no effect on the degradation of Inv-gp80sc, it stimulated the degradation of Inv-gp80. When the GPI anchor signal sequence of Inv-gp80 was replaced with the transmembrane domain of the interleukin-2 receptor, the degradation of the protein was no longer influenced by Ca2+ fluxes. The data suggest that while the GPI anchor sequence of Inv-gp80 does not contain determinants regulating the degradation of the protein under basal conditions, it targets Inv-gp80 for rapid degradation under conditions where Ca2+ is depleted from the endoplasmic reticulum.

2006 ◽  
Vol 401 (2) ◽  
pp. 607-612 ◽  
Author(s):  
Anna C. Callan ◽  
Sandra Bunning ◽  
Owen T. Jones ◽  
Stephen High ◽  
Eileithyia Swanton

TorsinA is a widely expressed AAA+ (ATPases associated with various cellular activities) ATPase of unknown function. Previous studies have described torsinA as a type II protein with a cleavable signal sequence, a single membrane spanning domain, and its C-terminus located in the ER (endoplasmic reticulum) lumen. However, in the present study we show that torsinA is not in fact an integral membrane protein. Instead we find that the mature protein associates peripherally with the ER membrane, most likely through an interaction with an integral membrane protein. Consistent with this model, we provide evidence that the signal peptidase complex cleaves the signal sequence of torsinA, and we show that the region previously suggested to form a transmembrane domain is translocated into the lumen of the ER. The finding that torsinA is a peripheral, and not an integral membrane protein as previously thought, has important implications for understanding the function of this novel ATPase.


2004 ◽  
Vol 78 (12) ◽  
pp. 6370-6380 ◽  
Author(s):  
Kiyoko Okamoto ◽  
Kohji Moriishi ◽  
Tatsuo Miyamura ◽  
Yoshiharu Matsuura

ABSTRACT Hepatitis C virus (HCV) core protein is suggested to localize to the endoplasmic reticulum (ER) through a C-terminal hydrophobic region that acts as a membrane anchor for core protein and as a signal sequence for E1 protein. The signal sequence of core protein is further processed by signal peptide peptidase (SPP). We examined the regions of core protein responsible for ER retention and processing by SPP. Analysis of the intracellular localization of deletion mutants of HCV core protein revealed that not only the C-terminal signal-anchor sequence but also an upstream hydrophobic region from amino acid 128 to 151 is required for ER retention of core protein. Precise mutation analyses indicated that replacement of Leu139, Val140, and Leu144 of core protein by Ala inhibited processing by SPP, but cleavage at the core-E1 junction by signal peptidase was maintained. Additionally, the processed E1 protein was translocated into the ER and glycosylated with high-mannose oligosaccharides. Core protein derived from the mutants was translocated into the nucleus in spite of the presence of the unprocessed C-terminal signal-anchor sequence. Although the direct association of core protein with a wild-type SPP was not observed, expression of a loss-of-function SPP mutant inhibited cleavage of the signal sequence by SPP and coimmunoprecipitation with unprocessed core protein. These results indicate that Leu139, Val140, and Leu144 in core protein play crucial roles in the ER retention and SPP cleavage of HCV core protein.


2008 ◽  
Vol 19 (2) ◽  
pp. 623-632 ◽  
Author(s):  
Samuel B. Stephens ◽  
Christopher V. Nicchitta

In eukaryotic cells, mRNAs encoding signal sequence-bearing proteins undergo translation-dependent trafficking to the endoplasmic reticulum (ER), thereby restricting secretory and integral membrane protein synthesis to the ER compartment. However, recent studies demonstrating that mRNAs encoding cytosolic/nucleoplasmic proteins are represented on ER-bound polyribosomes suggest a global role for the ER in cellular protein synthesis. Here, we examined the steady-state protein synthesis rates and compartmental distribution of newly synthesized proteins in the cytosol and ER compartments. We report that ER protein synthesis rates exceed cytosolic protein synthesis rates by 2.5- to 4-fold; yet, completed proteins accumulate to similar levels in the two compartments. These data suggest that a significant fraction of cytosolic proteins undergo synthesis on ER-bound ribosomes. The compartmental differences in steady-state protein synthesis rates correlated with a divergent regulation of the tRNA aminoacylation/deacylation cycle. In the cytosol, two pathways were observed to compete for aminoacyl-tRNAs—protein synthesis and aminoacyl-tRNA hydrolysis—whereas on the ER tRNA deacylation is tightly coupled to protein synthesis. These findings identify a role for the ER in global protein synthesis, and they suggest models where compartmentalization of the tRNA acylation/deacylation cycle contributes to the regulation of global protein synthesis rates.


2008 ◽  
Vol 82 (19) ◽  
pp. 9477-9491 ◽  
Author(s):  
Scott R. Schaecher ◽  
Michael S. Diamond ◽  
Andrew Pekosz

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) ORF7b (also called 7b) protein is an integral membrane protein that is translated from a bicistronic open reading frame encoded within subgenomic RNA 7. When expressed independently or during virus infection, ORF7b accumulates in the Golgi compartment, colocalizing with both cis- and trans-Golgi markers. To identify the domains of this protein that are responsible for Golgi localization, we have generated a set of mutant proteins and analyzed their subcellular localizations by indirect immunofluorescence confocal microscopy. The N- and C-terminal sequences are dispensable, but the ORF7b transmembrane domain (TMD) is essential for Golgi compartment localization. When the TMD of human CD4 was replaced with the ORF7b TMD, the resulting chimeric protein localized to the Golgi complex. Scanning alanine mutagenesis identified two regions in the carboxy-terminal portion of the TMD that eliminated the Golgi complex localization of the chimeric CD4 proteins or ORF7b protein. Collectively, these data demonstrate that the Golgi complex retention signal of the ORF7b protein resides solely within the TMD.


2002 ◽  
Vol 13 (11) ◽  
pp. 3775-3786 ◽  
Author(s):  
Soo Jung Kim ◽  
Ramanujan S. Hegde

The decisive events that direct a single polypeptide such as the prion protein (PrP) to be synthesized at the endoplasmic reticulum in both fully translocated and transmembrane forms are poorly understood. In this study, we demonstrate that the topological heterogeneity of PrP is determined cotranslationally, while at the translocation channel. By evaluating sequential intermediates during PrP topogenesis, we find that signal sequence-mediated initiation of translocation results in an interaction between nascent PrP and endoplasmic reticulum chaperones, committing the N terminus to the lumen. Synthesis of the transmembrane domain before completion of this step allows it to direct the generation of CtmPrP, a transmembrane form with its N terminus in the cytosol. Thus, segregation of nascent PrP into different topological configurations is critically dependent on the precise timing of signal-mediated initiation of N-terminus translocation. Consequently, this step could be experimentally tuned to modify PrP topogenesis, including complete reversal of the elevatedCtmPrP caused by disease-associated mutations in the transmembrane domain. These results delineate the sequence of events involved in PrP biogenesis, explain the mechanism of action ofCtmPrP-favoring mutations associated with neurodegenerative disease, and more generally, reveal that translocation substrates can be cotranslationally partitioned into multiple populations at the translocon.


1995 ◽  
Vol 6 (7) ◽  
pp. 809-824 ◽  
Author(s):  
T R Graham ◽  
V A Krasnov

alpha 1,3 mannosyltransferase (Mnn1p) is a type II integral membrane protein that is localized to the yeast Golgi complex. We have examined the signals within Mnn1p that mediate Golgi localization by expression of fusion proteins comprised of Mnn1p and the secreted protein invertase. The N-terminal transmembrane domain (TMD) of Mnn1p is sufficient to localize invertase to the Golgi complex by a mechanism that is not saturable by approximately 15-20 fold overexpression. Furthermore, the TMD-mediated localization mechanism is clathrin dependent, as an invertase fusion protein bearing only the Mnn1p TMD is mislocalized to the plasma membrane of a clathrin heavy chain mutant. The Mnn1-invertase fusion proteins are not retained in the Golgi complex as efficiently as Mnn1p, suggesting that other signals may be present in the wild-type protein. Indeed, the Mnn1p lumenal domain (Mnn1-s) is also localized to the Golgi complex when expressed as a functional, soluble protein by exchanging its TMD for a cleavable signal sequence. In contrast to the Mnn1-invertase fusion proteins, overexpression of Mnn1-s saturates its retention mechanism, and results in the partial secretion of this protein. These data indicate that Mnn1p has separable Golgi localization signals within both its transmembrane and lumenal domains.


2009 ◽  
Vol 425 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Evangelia Pantazaka ◽  
Colin W. Taylor

Targeting of IP3R (inositol 1,4,5-trisphosphate receptors) to membranes of the ER (endoplasmic reticulum) and their retention within ER or trafficking to other membranes underlies their ability to generate spatially organized Ca2+ signals. N-terminal fragments of IP3R1 (type 1 IP3R) were tagged with enhanced green fluorescent protein, expressed in COS-7 cells and their distribution was determined by confocal microscopy and subcellular fractionation. Localization of IP3R1 in the ER requires translation of between 26 and 34 residues beyond the end of the first transmembrane domain (TMD1), a region that includes TMD2 (second transmembrane domain). Replacement of these post-TMD1 residues with unrelated sequences of similar length (24–36 residues) partially mimicked the native residues. We conclude that for IP3R approx. 30 residues after TMD1 must be translated to allow a signal sequence within TMD1 to be extruded from the ribosome and mediate co-translational targeting to the ER. Hydrophobic residues within TMD1 and TMD2 then ensure stable association with the ER membrane.


1999 ◽  
Vol 73 (4) ◽  
pp. 2641-2649 ◽  
Author(s):  
Laurence Cocquerel ◽  
Sandrine Duvet ◽  
Jean-Christophe Meunier ◽  
André Pillez ◽  
René Cacan ◽  
...  

ABSTRACT Hepatitis C virus (HCV) glycoproteins E1 and E2 assemble to form a noncovalent heterodimer which, in the cell, accumulates in the endoplasmic reticulum (ER). Contrary to what is observed for proteins with a KDEL or a KKXX ER-targeting signal, the ER localization of the HCV glycoprotein complex is due to a static retention in this compartment rather than to its retrieval from the cis-Golgi region. A static retention in the ER is also observed when E2 is expressed in the absence of E1 or for a chimeric protein containing the ectodomain of CD4 in fusion with the transmembrane domain (TMD) of E2. Although they do not exclude the presence of an intracellular localization signal in E1, these data do suggest that the TMD of E2 is an ER retention signal for HCV glycoprotein complex. In this study chimeric proteins containing the ectodomain of CD4 or CD8 fused to the C-terminal hydrophobic sequence of E1 were shown to be localized in the ER, indicating that the TMD of E1 is also a signal for ER localization. In addition, these chimeric proteins were not processed by Golgi enzymes, indicating that the TMD of E1 is responsible for true retention in the ER, without recycling through the Golgi apparatus. Together, these data suggest that at least two signals (TMDs of E1 and E2) are involved in ER retention of the HCV glycoprotein complex.


Sign in / Sign up

Export Citation Format

Share Document