scholarly journals Evidence for a Menkes-like protein with a nuclear targeting sequence

2000 ◽  
Vol 350 (3) ◽  
pp. 855-863 ◽  
Author(s):  
Manchi C. M. REDDY ◽  
Sudeep MAJUMDAR ◽  
Edward D. HARRIS

Extracts from three human cell lines were found to contain abridged Menkes disease gene transcripts with novel insertion sequences. The transcript variant that is the focus of the present study codes for a 103-residue protein containing the first heavy-metal-binding domain (Hmb1) of ATP7A, the Cu-ATPase associated with Menkes disease. This transcript variant has a 45-bp nucleotide insert interposed between exons 1 and 2 of ATP7A that starts with a 5´ ATG that is in-frame with the downstream ATG translation start site of ATP7A. We report here that the 66-bp nucleotides positioned between the upstream and downstream ATG sites encode 22 amino acid residues whose primary structure in part meets the criteria for a nuclear-localization sequence (NLS). We have referred to the transcript as nuclear Menkes-like (NML) 45. A green fluorescent protein (GFP) construct with NML45 when transfected in Chinese hamster ovary cells localized to the cell nucleus. A similar construct without the 66-bp segment exhibited a random dispersed fluorescent pattern in the cytosol. GFP constructs encoding ATP7A exons likewise failed to direct GFP into the cell nucleus, suggesting the nuclear determinant is not in an internal domain of the protein. The data suggest that the 22-residue segment contains an NLS for an 11.2-kDa protein with one Cu-binding site that may function as a chaperone to transport Cu into the nucleus of mammalian cells.

2005 ◽  
Vol 280 (16) ◽  
pp. 16219-16226 ◽  
Author(s):  
Hagai Shorer ◽  
Nira Amar ◽  
Ari Meerson ◽  
Zvulun Elazar

Adaptation of eukaryotic cells to changing environmental conditions entails rapid regulation of protein targeting and transport to specific organelles. Such adaptation is well exemplified in mammalian cells exposed to nitrogen starvation that are triggered to form and transport autophagosomes to lysosomes, thus constituting an inducible intracellular trafficking pathway. Here we investigated the relationship between the general secretory machinery and the autophagic pathway in Chinese hamster ovary cells grown in the absence of amino acid. Utilizing VSVG-YFP (vesicular stomatitis virus G protein fused to yellow fluorescent protein) and norepinephrine as markers for constitutive and regulated exocytosis, respectively, we found that secretion is attenuated in cells grown in media lacking amino acid. Such decrease in exocytosis stems from partial inhibition ofN-ethylmaleimide-sensitive factor ATPase activity, which in turn causes an accumulation of SNARE complexes at both the Golgi apparatus and the plasma membrane of the starved cells. These findings expose a novel cellular strategy to attenuate secretion of proteins under conditions of limited amino acid supply.


1988 ◽  
Vol 8 (7) ◽  
pp. 2698-2704 ◽  
Author(s):  
I W Caras ◽  
D W Martin

Mammalian ribonucleotide reductase is regulated by the binding of dATP and other nucleotide effectors to allosteric sites on subunit M1. Using mRNA from a mutant mouse T-lymphoma (S49) cell line, we have isolated a cDNA which encodes an altered, dATP feedback-resistant subunit M1. The mutant cDNA contains a single point mutation (a G-to-A transition) at codon 57, converting aspartic acid to asparagine. Proof that this mutation is responsible for the phenotype of dATP feedback resistance is provided by the following evidence. (i) The mutation was detected only in mutant S49 cells containing dATP feedback-resistant ribonucleotide reductase and not in wild-type or other mutant S49 cells. (ii) Transfection of Chinese hamster ovary cells with an expression plasmid containing the mutant M1 cDNA resulted in the production of dATP feedback-resistant ribonucleotide reductase. Transfected CHO cells expressing the mutant M1 cDNA exhibited a 15- to 25-fold increase in the frequency of spontaneous mutation to 6-thioguanine resistance, confirming that dATP feedback-resistant ribonucleotide reductase produces a mutator phenotype in mammalian cells. The availability of a cDNA which encodes dATP feedback-resistant subunit M1 thus provides a means of manipulating by transfection the frequency of spontaneous mutation in mammalian cells.


1987 ◽  
Vol 7 (1) ◽  
pp. 532-534 ◽  
Author(s):  
J M Leeds ◽  
C K Mathews

dCTP pools equilibrated to equivalent specific activities in Chinese hamster ovary cells or in nuclei after incubation of cells with radiolabeled nucleosides, indicating that dCTP in nuclei does not constitute a distinct metabolic pool. In the G1 phase, [5-3H]deoxycytidine labeled dCTP to unexpectedly high specific activities. This may explain reports of replication-excluded DNA precursor pools.


2007 ◽  
Vol 282 (46) ◽  
pp. 33831-33844 ◽  
Author(s):  
Yoshinori Kashiwayama ◽  
Kota Asahina ◽  
Masashi Morita ◽  
Tsuneo Imanaka

The 70-kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. Human PMP70 consists of 659 amino acid residues and has six putative transmembrane domains (TMDs). PMP70 is synthesized on cytoplasmic ribosomes and targeted posttranslationally to peroxisomes by an unidentified peroxisomal membrane protein targeting signal (mPTS). In this study, to examine the mPTS within PMP70 precisely, we expressed various COOH-terminally or NH2-terminally deleted constructs of PMP70 fused with green fluorescent protein (GFP) in Chinese hamster ovary cells and determined their intracellular localization by immunofluorescence. In the COOH-terminally truncated PMP70, PMP70(AA.1-144)-GFP, including TMD1 and TMD2 of PMP70, was still localized to peroxisomes. However, by further removal of TMD2, PMP70(AA.1-124)-GFP lost the targeting ability, and PMP70(TMD2)-GFP did not target to peroxisomes by itself. The substitution of TMD2 in PMP70(AA.1-144)-GFP for TMD4 or TMD6 did not affect the peroxisomal localization, suggesting that PMP70(AA.1-124) contains the mPTS and an additional TMD is required for the insertion into the peroxisomal membrane. In the NH2-terminal 124-amino acid region, PMP70 possesses hydrophobic segments in the region adjacent to TMD1. By the disruption of these hydrophobic motifs by the mutation of L21Q/L22Q/L23Q or I70N/L71Q, PMP70(AA.1-144)-GFP lost targeting efficiency. The NH2-terminally truncated PMP70, GFP-PMP70(AA.263-375), including TMD5 and TMD6, exhibited the peroxisomal localization. PMP70(AA.263-375) also possesses hydrophobic residues (Ile307/Leu308) in the region adjacent to TMD5, which were important for targeting. These results suggest that PMP70 possesses two distinct targeting signals, and hydrophobic regions adjacent to the first TMD of each region are important for targeting.


1995 ◽  
Vol 6 (2) ◽  
pp. 135-150 ◽  
Author(s):  
N T Ktistakis ◽  
C Y Kao ◽  
R H Wang ◽  
M G Roth

The use of reporter proteins to study the regulation of secretion has often been complicated by posttranslational processing events that influence the secretion of certain proteins, but are not part of the cellular mechanisms that specifically regulate secretion. This has been a particular limitation for the isolation of mammalian secretion mutants, which has typically been a slow process. To provide a reporter of secretory activity independent of protein processing events, cells were labeled with the fluorescent lipid analogue C5-DMB-ceramide (ceramide coupled to the fluorophore boron dipyrromethene difluoride) and its secretion was followed by fluorescence microscopy and fluorescence-activated cell sorting. Brefeldin A, which severely inhibits secretion in Chinese hamster ovary cells, blocked secretion of C5-DMB-ceramide. At high temperature, export of C5-DMB-ceramide was inhibited in HRP-1 cells, which have a conditional defect in secretion. Using C5-DMB-ceramide as a reporter of secretory activity, several different pulse-chase protocols were designed that selected mutant Chinese hamster ovary cells that were resistant to the drug brefeldin A and others that were defective in the transport of glycoproteins to the cell surface. Mutant cells of either type were identified in a mutagenized population at a frequency of 10(-6). Thus, the fluorescent lipid C5-DMB-ceramide can be used as a specific marker of secretory activity, providing an efficient, general approach for isolating mammalian cells with defects in the secretory pathway.


1982 ◽  
Vol 2 (6) ◽  
pp. 701-707
Author(s):  
M. Salditt-Georgieff ◽  
J. E. Darnell

Nuclear RNA from Chinese hamster ovary cells was effectively separated into polyadenylic acid [poly(A)]-containing [poly (A) + ] and non-poly(A)-containing [poly(A) − ] fractions so that ∼90% of the poly(A) was present in the (A) + fraction. Only 25% of the 5′-terminal caps of the large nuclear molecules were present in the (A) + class, but about 70% of the specific mRNA sequences (assayed with cDNA clones) were in the (A) + class. It appears that many long capped heterogeneous nuclear RNA molecules are of a different sequence category from those molecules that are successfully processed into mRNA.


2000 ◽  
Vol 346 (3) ◽  
pp. 587-591 ◽  
Author(s):  
Antonio CIRUELA ◽  
Katherine A. HINCHLIFFE ◽  
Nullin DIVECHA ◽  
Robin F. IRVINE

Type II phosphatidylinositol phosphate kinases (PIPkins) have recently been found to be primarily phosphatidylinositol 5-phosphate 4-kinases, and their physiological role remains unclear. We have previously shown that a Type II PIPkin [isoform(s) unknown], is localized partly in the nucleus [Divecha, Rhee, Letcher and Irvine (1993) Biochem. J. 289, 617-620], and here we show, by transfection of HeLa cells with green-fluorescent-protein-tagged Type II PIPkins, that this is likely to be the Type IIβ isoform. Type IIβ PIPkin has no obvious nuclear localization sequence, and a detailed analysis of the localization of chimaeras and mutants of the α (cytosolic) and β PIPkins shows that the nuclear localization requires the presence of a 17-amino-acid length of α-helix (α-helix 7) that is specific to the β isoform, and that this helix must be present in its entirety, with a precise orientation. This resembles the nuclear targeting of the HIV protein Vpr, and Type IIβ PIPkin is apparently therefore the first example of a eukaryotic protein that uses the same mechanism.


1975 ◽  
Vol 17 (4) ◽  
pp. 503-515 ◽  
Author(s):  
Victor Ling

Independent colchicine-resistant (CHR) mutants of Chinese hamster ovary cells displaying reduced permeability to colchicine have been isolated. A distinguishing feature of these membrane-altered mutants is their pleiotropic cross-resistance to a variety of unrelated compounds. Genetic characterization of the CHR lines indicates that colchicine resistance and cross-resistance to other drugs are of a dominant nature in somatic cell hybrids. Revertants of CHR have been isolated which display decreased resistance to colchicine and a corresponding decrease in resistance to other drugs. These results strongly suggest that colchicine resistance and the pleiotropic cross-resistance are the result of the same mutation(s). Biochemical studies indicate that although colchicine is transported into our cells by passive diffusion, no major alterations in the membrane lipids could be detected in mutant cells. However, there appears to be an energy-dependent process in these cells which actively maintains a permeability barrier against colchicine and other drugs. The CHR cells might be altered in this process. A new glycoprotein has been identified in mutant cell membranes which is not present in parental cells, and is greatly reduced in revertant cells. A model for colchicine-resistance is proposed which suggests that certain membrane proteins such as the new glycoprotein of CHR cells, are modulators of membrane fluidity (mmf proteins) whose molecular conformation regulates membrane permeability to a variety of compounds and that the CHR mutants are altered in their mmf proteins. The possible importance of the CHR cells as models for investigating aspects of chemotherapy related to drug resistance is discussed.


2009 ◽  
Vol 186 (4) ◽  
pp. 615-628 ◽  
Author(s):  
Pinkesh Bhagatji ◽  
Rania Leventis ◽  
Jonathan Comeau ◽  
Mohammad Refaei ◽  
John R. Silvius

Diverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial lipid-anchored proteins, endogenous membrane proteins, and membrane lipid markers in Chinese hamster ovary cells. Soluble proteins, anchored to cell-inserted saturated or unsaturated phosphatidylethanolamine (PE)-polyethyleneglycols (PEGs), closely resemble the GPI-anchored folate receptor but differ markedly from the transferrin receptor, membrane lipid markers, and even protein-free PE-PEGs, both in their distribution in peripheral endocytic vesicles and in the manner in which their endocytic uptake responds to manipulations of cellular Arf1 or dynamin activity. These findings suggest that the distinctive endocytic targeting of GPI proteins requires neither biospecific recognition of their GPI anchors nor affinity for ordered-lipid microdomains but is determined by a more fundamental property, the steric bulk of the lipid-anchored protein.


1999 ◽  
Vol 144 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Jonathan D. Moore ◽  
Jing Yang ◽  
Ray Truant ◽  
Sally Kornbluth

Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence–containing protein, binding to the α adaptor subunit of the importin-α/β heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-β that is distinct from that used to bind importin-α.


Sign in / Sign up

Export Citation Format

Share Document