scholarly journals Retraction: MicroRNA-140-5p suppresses retinoblastoma cell growth via inhibiting c-Met/AKT/mTOR pathway

2021 ◽  
Vol 41 (6) ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Juyoung Kim ◽  
Kyung Hee Jung ◽  
Hyung Won Ryu ◽  
Doo-Young Kim ◽  
Sei-Ryang Oh ◽  
...  

Xanthium strumarium (XS) has been traditionally used as a medicinal herb for treating inflammatory diseases, such as appendicitis, chronic bronchitis, rheumatism, and rhinitis. In this study, we yielded ethanol extracts from XS and investigated whether they could inhibit the progression of hepatocellular carcinoma (HCC) and its underlying mechanism. The XS-5 and XS-6 extracts dose-dependently inhibited the growth and proliferation in HCC cell lines. The apoptotic effects of them were observed via increased levels of cleaved caspase-3 and cleaved PARP, as well as elevated numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling- (TUNEL-) positive apoptotic cells. They also decreased XIAP and Mcl-1 expression via loss of mitochondrial membrane potential. Additionally, they inhibited the invasion and migration of HCC cells. In an ex vivo model, the extracts significantly inhibited tumor cell growth and induced apoptosis by increasing the expression of the cleaved caspase-3. A mechanistic study revealed that they effectively suppressed PI3K/AKT/mTOR signaling pathways in HCC cells. Taken together, our findings demonstrate that they could efficiently not only induce apoptosis but also inhibit cell growth, migration, and invasion of human HCC cells by blocking the PI3K/AKT/mTOR pathway. We suggest XS-5 and XS-6 as novel natural anti-HCC agents.


2012 ◽  
Vol 3 (3) ◽  
pp. e275-e275 ◽  
Author(s):  
W-Y Shi ◽  
D Xiao ◽  
L Wang ◽  
L-H Dong ◽  
Z-X Yan ◽  
...  

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Yujun Liao ◽  
Xiaolong Yin ◽  
Yan Deng ◽  
Xiaowei Peng

MiR-140-5p is low expression and acts as a tumor suppressor in various types of human cancers. However, the potential role of miR-140-5p in retinoblastoma (RB) remains unknown. In the present study, we performed the miRNA microarray analysis to investigate whether miRNAs expression are associated with RB tumorigenesis in RB tissues. We found that a large set of miRNAs were ectopic expressions and miR-140-5p is most significantly down-regulated in human RB tissues compared with normal retinas. In addition, low miR-140-5p expression is associated with clinicopathological features (differentiation, invasion, T classification, N classification, cTNM stage, and largest tumor base) and poor survival in RB patients. Furthermore, our results showed that overexpression of miR-140-5p suppresses proliferation and induces apoptosis and cell cycle arrest in RB cell. Meanwhile, we confirmed that c-Met is the functional target of miR-140-5p in RB cell, and miR-140-5p expression is negatively correlated with c-Met in RB tissues. We also found that inhibition of c-Met also suppresses proliferation and induces apoptosis and cell cycle arrest in RB cell. Interestingly, c-Met can rescue the suppressive effects of miR-140-5p on RB cell growth and cell cycle arrest. More importantly, our findings indicated that miR-140-5p may inhibit cell growth via blocking c-Met/AKT/mTOR signaling pathway. Collectively, these results suggested that miR-140-5p might be a potential biomarker and target in the diagnosis and treatment of RB.


2014 ◽  
Vol 9 (3) ◽  
pp. 935-940 ◽  
Author(s):  
CHUAN LI ◽  
XI YANG ◽  
CHENG CHEN ◽  
SHAOXIN CAI ◽  
JUNBO HU

FEBS Journal ◽  
2014 ◽  
Vol 281 (5) ◽  
pp. 1355-1365 ◽  
Author(s):  
Jianwen Wang ◽  
Xiaochun Wang ◽  
Zhongji Li ◽  
Hongtao Liu ◽  
Yan Teng

2010 ◽  
Vol 10 ◽  
pp. 944-953 ◽  
Author(s):  
Mahasin Osman

IQGAP1, an effector of CDC42p GTPase, is a widely conserved, multifunctional protein that bundles F-actin through its N-terminus and binds microtubules through its C-terminus to modulate the cell architecture. It has emerged as a potential oncogene associated with diverse human cancers. Therefore, IQGAP1 has been heavily investigated; regardless, its precise cellular function remains unclear. Work from yeast suggests that IQGAP1 plays an important role in directed cell growth, which is a conserved feature crucial to morphogenesis, division axis, and body plan determination. New evidence suggests a conserved role for IQGAP1 in protein synthesis and membrane traffic, which may help to explain the diversity of its cellular functions. Membrane traffic mediates infections by intracellular pathogens and a range of degenerative human diseases arise from dysfunctions in intracellular traffic; thus, elucidating the mechanisms of cellular traffic will be important in order to understand the basis of a wide range of inherited and acquired human diseases. Recent evidence suggests that IQGAP1 plays its role in cell growth through regulating the conserved mTOR pathway. The mTOR signaling cascade has been implicated in membrane traffic and is activated in nearly all human cancers, but clinical response to the mTOR-specific inhibitor rapamycin has been disappointing. Thus, understanding the regulators of this pathway will be crucial in order to identify predictors of rapamycin sensitivity. In this review, I discuss emerging evidence that supports a potential role of IQGAP1 in regulating membrane traffic via regulating the mTOR pathway.


Sign in / Sign up

Export Citation Format

Share Document