Promoter cloning and characterization of the human programmed cell death protein 4 (pdcd4) gene: evidence for ZBP-89 and Sp-binding motifs as essential Pdcd4 regulators

2012 ◽  
Vol 32 (3) ◽  
pp. 281-297 ◽  
Author(s):  
Jörg Hendrik Leupold ◽  
Irfan Ahmed Asangani ◽  
Giridhar Mudduluru ◽  
Heike Allgayer

Pdcd4 (programmed cell death protein 4) is an important novel tumour suppressor inhibiting transformation, translation, invasion and intravasation, and its expression is down-regulated in several cancers. However, little is known about the transcriptional regulation and the promoter of this important tumour suppressor. So far the following is the first comprehensive study to describe the regulation of Pdcd4 transcription by ZBP-89 (zinc-finger-binding protein 89), besides characterizing the gene promoter. We identified the transcriptional start sites of the human pdcd4 promoter, a functional CCAAT-box, and the basal promoter region. Within this basal region, computer-based analysis revealed several potential binding sites for ZBPs, especially for Sp (specificity protein) family members and ZBP-89. We identified four Sp1/Sp3/Sp4-binding elements to be indispensable for basal promoter activity. However, overexpression of Sp1 and Sp3 was not sufficient to enhance Pdcd4 protein expression. Analysis in different solid cancer cell lines showed a significant correlation between pdcd4 and zbp-89 mRNA amounts. In contrast with Sp transcription factors, overexpression of ZBP-89 led to an enhanced expression of Pdcd4 mRNA and protein. Additionally, specific knockdown of ZBP-89 resulted in a decreased pdcd4 gene expression. Reporter gene analysis showed a significant up-regulation of basal promoter activity by co-transfection with ZBP-89, which could be abolished by mithramycin treatment. Predicted binding of ZBP-89 to the basal promoter was confirmed by EMSA (electrophoretic mobility-shift assay) data and supershift analysis for ZBP-89. Taken together, data for the first time implicate ZBP-89 as a regulator of Pdcd4 by binding to the basal promoter either alone or by interacting with Sp family members.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ece Esin

In the last decade, we have gained a deeper understanding of innate immune system. The mechanism of the continuous guarding of progressive mutations happening in a single cell was discovered and the production and the recognition of tumor associated antigens by the T-cells and elimination of numerous tumors by immune-editing were further understood. The new discoveries on immune mechanisms and its relation with carcinogenesis have led to development of a new class of drugs called immunotherapeutics. T lymphocyte-associated antigen 4, programmed cell death protein 1, and programmed cell death protein ligand 1 are the classes drugs based on immunologic manipulation and are collectively known as the “checkpoint inhibitors.” Checkpoint inhibitors have shown remarkable antitumor efficacy in a broad spectrum of malignancies; however, the strongest and most durable immune responses do not last long and the more durable responses only occur in a small subset of patients. One of the solutions which have been put forth to overcome these challenges is combination strategies. Among the dual use of methods, a backbone with either PD-1 or PD-L1 antagonist drugs alongside with certain cytotoxic chemotherapies, radiation, targeted drugs, and novel checkpoint stimulators is the most promising approach and will be on stage in forthcoming years.


2021 ◽  
Author(s):  
guangping Li ◽  
Haiqiong Guo ◽  
linan zhao ◽  
Huixian Feng ◽  
Huawei He ◽  
...  

The combination of the human programmed cell death protein 1 (hPD-1) and its ligand hPD-L1 activates the immune escape of tumors, and the blockage in PD-1/PD-L1 involved pathway can enhance...


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi67-vi67
Author(s):  
Peter Pan ◽  
Alireza Tafazzol ◽  
Xianwei Zhang ◽  
Yong Duan

Sign in / Sign up

Export Citation Format

Share Document