innovative therapies
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 149)

H-INDEX

25
(FIVE YEARS 5)

Livers ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-14
Author(s):  
Sheikh Mohammad Fazle Akbar ◽  
Mamun Al Mahtab ◽  
Osamu Yoshida ◽  
Yoichi Hiasa

Millions of people of the world suffer from chronic hepatitis B (CHB), a pathological entity in which the patients are chronically infected with hepatitis B virus (HBV) and express hepatitis B surface antigen (HBsAg) and HBV DNA, as well as evidence of liver damages. Considerable numbers of CHB patients develop cirrhosis of the liver and hepatocellular carcinoma if untreated. Two groups of drugs (interferons and nucleoside analogs) are used to treat CHB patients, but both are endowed with considerable adverse effects, increased costs, extended duration of therapy, and limited efficacy. Thus, there is a pressing need to develop new and innovative therapeutics for CHB patients, and many such drugs have been developed during the last four decades. Some of these drugs have inspired considerable optimism to be a game-changer for the treatment of CHB. Here, we first discuss why ongoing therapeutics such as interferon and nucleoside analogs could not stand the test of time. Next, we dissect the scope and limitation of evolving therapies for CHB by dissecting the cellular and molecular mechanisms of some of these innovative therapeutics.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Pier Francesco Ferrucci ◽  
Emilia Cocorocchio

Immunotherapy with Ipilimumab or antibodies against programmed death (ligand) 1 (anti-PD1/PDL1), targeted therapies with BRAF-inhibitors (anti-BRAF) and their combinations significantly changed melanoma treatment options in both primary, adjuvant and metastatic setting, allowing for a cure, or at least long-term survival, in most patients. However, up to 50% of those with advance or metastatic disease still have no significant benefit from such innovative therapies, and clinicians are not able to discriminate in advance neither who is going to respond and for how long nor who is going to develop collateral effects and which ones. However, druggable targets, as well as affordable and reliable biomarkers are needed to personalize resources at a single-patient level. In this manuscript, different molecules, genes, cells, pathways and even combinatorial algorithms or scores are included in four biomarker chapters (molecular, immunological, peripheral and gut microbiota) and reviewed in order to evaluate their role in indicating a patient’s possible response to treatment or development of toxicities.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 88
Author(s):  
Marco Giampà ◽  
María J. Amundarain ◽  
Maria Georgina Herrera ◽  
Nicolò Tonali ◽  
Veronica I. Dodero

The aggregation of proteins into amyloid fibers is linked to more than forty still incurable cellular and neurodegenerative diseases such as Parkinson’s disease (PD), multiple system atrophy, Alzheimer’s disease and type 2 diabetes, among others. The process of amyloid formation is a main feature of cell degeneration and disease pathogenesis. Despite being methodologically challenging, a complete understanding of the molecular mechanism of aggregation, especially in the early stages, is essential to find new biological targets for innovative therapies. Here, we reviewed selected examples on α-syn showing how complementary approaches, which employ different biophysical techniques and models, can better deal with a comprehensive study of amyloid aggregation. In addition to the monomer aggregation and conformational transition hypothesis, we reported new emerging theories regarding the self-aggregation of α-syn, such as the alpha-helix rich tetramer hypothesis, whose destabilization induce monomer aggregation; and the liquid-liquid phase separation hypothesis, which considers a phase separation of α-syn into liquid droplets as a primary event towards the evolution to aggregates. The final aim of this review is to show how multimodal methodologies provide a complete portrait of α-syn oligomerization and can be successfully extended to other protein aggregation diseases.


Neurology ◽  
2021 ◽  
Vol 97 (24) ◽  
pp. 1121-1127
Author(s):  
Nicholas E. Johnson ◽  
Ericka Greene

Therapeutic development has accelerated rapidly in the past 5 years in many neurologic and neurodegenerative diseases. The therapeutic categories of development include small molecules, genetic therapies, and cell-based therapies. Current development has provided novel treatment approaches to disorders without available treatment. However, the regulatory procedures to allow for access to these therapies is challenging, as is the ability to provide wide access to increasingly expensive therapies. By 2035, these challenges are likely to have accelerated and have the potential to create bottlenecks in drug approval and reduced access to patients. Innovative regulatory and payer solutions are required. In addition, ethical considerations around genetic therapies should be considered in current and future development. These approaches will ensure that patients with neurologic disease have broad access to highly innovative therapies.


2021 ◽  
Author(s):  
Rong Sun ◽  
Mingzhu Liu ◽  
Jianping Lu ◽  
Binbin Chu ◽  
Yunmin Yang ◽  
...  

Abstract Bacteria can bypass the blood-brain barrier (BBB) transcellularly, paracellularly and/or in infected phagocytes, suggesting the possibility of employment of bacteria for combating central nervous system (CNS) diseases. However, the bacteria-based drug delivery vehicle crossing the BBB is still vacant up to present. Herein, we develop an innovative bacteria-based drug delivery system (dubbed Trojan bacteria) for glioblastoma (GBM) photothermal immunotherapy. Typically, Trojan bacteria are made of therapeutics internalized into bacteria (e.g., attenuated Salmonella typhimurium, Escherichia coli). The therapeutics are composed of glucose polymer (GP) (e.g., poly[4-O-(α-D-glucopyranosyl)-D-glucopyranose])-conjugated and indocyanine green (ICG)-loaded silicon nanoparticles (GP-ICG-SiNPs). The GP-ICG-SiNPs can be selectively and robustly internalized into the bacterial intracellular volume through the bacteria-specific ATP-binding cassette (ABC) transporter. In an orthotopic GBM mouse model, we demonstrate that the intravenously injected Trojan bacteria could take therapeutics together not only to bypass the BBB, but also to target and penetrate GBM tissues. Under 808 nm-laser irradiation, the photothermal effects (PTT) produced by ICG allow the destruction of Trojan bacterial cells and the adjacent tumour cells. Furthermore, the bacterial debris as well as the tumour-associated antigens would promote antitumor immune responses that prolong the survival of GBM-bearing mice. Moreover, we demonstrate the residual Trojan bacteria could be effectively eliminated from the body due to the distinct photothermal effects. We anticipate the proposed Trojan bacteria system would catalyze innovative therapies for various CNS diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gaohong Sheng ◽  
Yuan Gao ◽  
Yong Yang ◽  
Hua Wu

Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.


Author(s):  
Samantha Wilkinson ◽  
Alind Gupta ◽  
Eric Mackay ◽  
Paul Arora ◽  
Kristian Thorlund ◽  
...  

IntroductionThe German health technology assessment (HTA) rejected additional benefit of alectinib for second line (2L) ALK+ NSCLC, citing possible biases from missing ECOG performance status data and unmeasured confounding in real-world evidence (RWE) for 2L ceritinib that was submitted as a comparator to the single arm alectinib trial. Alectinib was approved in the US and therefore US post-launch RWE can be used to evaluate this HTA decision.MethodsWe compared the real-world effectiveness of alectinib with ceritinib in 2L post-crizotinib ALK+ NSCLC using the nationwide Flatiron Health electronic health record (EHR)-derived de-identified database. Using quantitative bias analysis (QBA), we estimated the strength of (i) unmeasured confounding and (ii) deviation from missing-at-random (MAR) assumptions needed to nullify any overall survival (OS) benefit.ResultsAlectinib had significantly longer median OS than ceritinib in complete case analysis. The estimated effect size (Hazard Ratio: 0.55) was robust to risk ratios of unmeasured confounder-outcome and confounder-exposure associations of <2.4.Based on tipping point analysis, missing baseline ECOG performance status for ceritinib-treated patients (49% missing) would need to be more than 3.4-times worse than expected under MAR to nullify the OS benefit observed for alectinib.ConclusionsOnly implausible levels of bias reversed our conclusions. These methods could provide a framework to explore uncertainty and aid decision-making for HTAs to enable patient access to innovative therapies.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5829
Author(s):  
Pamela Trillo Aliaga ◽  
Dario Trapani ◽  
José Luis Sandoval ◽  
Edoardo Crimini ◽  
Gabriele Antonarelli ◽  
...  

Pivotal trials of COVID-19 vaccines did not include cancer patients, with questions remaining about their safety and efficacy in this population. Patients enrolled in early-phase clinical trials receive novel treatments with unknown efficacy and safety profiles. Studies on the safety of COVID-19 vaccines in these patients are urgently required. This is a retrospective, real-world, cohort study of patients receiving anticancer treatments and COVID-19 vaccines between 1 February and 25 June 2021 at the Division of New Drugs Development for Innovative Therapies of the European Institute of Oncology. One hundred thirteen patients were enrolled, 40 in early-phase clinical trials, and 20 under novel immunotherapy agents. Nearly three-quarters of the patients experienced at least one adverse event (AE) after the first dose (1D) (74.3%) and second dose (2D) (72.6%). Most of the AEs were local (67.3% 1D and 61.9% after 2D), while 31.8% (1D) and 38.1% (2D) of the patients had systemic AEs. No AEs above grade 2 were observed. Therefore, COVID-19 vaccines appear to be safe in patients enrolled in early-phase clinical trials, including patients receiving novel immunotherapy compounds. All cancer patients should be prioritized for COVID-19 vaccination, regardless of ongoing treatments or enrollment in early-phase trials.


Sign in / Sign up

Export Citation Format

Share Document