Metallic prions

2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.

2006 ◽  
Vol 7 (1-2) ◽  
pp. 97-105 ◽  
Author(s):  
Scott P. Leach ◽  
M. D. Salman ◽  
Dwayne Hamar

Transmissible spongiform encephalopathies (TSEs) are a family of neurodegenerative diseases characterized by their long incubation periods, progressive neurological changes, and spongiform appearance in the brain. There is much evidence to show that TSEs are caused by an isoform of the normal cellular surface prion protein PrPC. The normal function of PrPC is still unknown, but it exhibits properties of a cupro-protein, capable of binding up to six copper ions. There are two differing views on copper's role in prion diseases. While one view looks at the PrPC copper-binding as the trigger for conversion to PrPSc, the opposing viewpoint sees a lack of PrPC copper-binding resulting in the conformational change into the disease causing isoform. Manganese and zinc have been shown to interact with PrPC as well and have been found in abnormal levels in prion diseases. This review addresses the interaction between select trace elements and the PrPC.


Author(s):  
R G Will

Prion protein (for proteinacious infectious particle) is a membrane-associated glycoprotein present in all mammalian species. Its normal function is unknown, but in prion diseases (also known as transmissible spongiform encephalopathies) a post-translationally modified form of the protein, partially resistant to protease digestion, is deposited in the brain and associated—after long incubation periods—with neuronal dysfunction and death....


2006 ◽  
Vol 20 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Gwynivere A Davies ◽  
Adam R Bryant ◽  
John D Reynolds ◽  
Frank R Jirik ◽  
Keith A Sharkey

The gastrointestinal (GI) tract plays a central role in the pathogenesis of transmissible spongiform encephalopathies. These are human and animal diseases that include bovine spongiform encephalopathy, scrapie and Creutzfeldt-Jakob disease. They are uniformly fatal neurological diseases, which are characterized by ataxia and vacuolation in the central nervous system. Alhough they are known to be caused by the conversion of normal cellular prion protein to its infectious conformational isoform (PrPsc) the process by which this isoform is propagated and transported to the brain remains poorly understood. M cells, dendritic cells and possibly enteroendocrine cells are important in the movement of infectious prions across the GI epithelium. From there, PrPscpropagation requires B lymphocytes, dendritic cells and follicular dendritic cells of Peyer’s patches. The early accumulation of the disease-causing agent in the plexuses of the enteric nervous system supports the contention that the autonomic nervous system is important in disease transmission. This is further supported by the presence of PrPscin the ganglia of the parasympathetic and sympathetic nerves that innervate the GI tract. Additionally, the lymphoreticular system has been implicated as the route of transmission from the gut to the brain. Although normal cellular prion protein is found in the enteric nervous system, its role has not been characterized. Further research is required to understand how the cellular components of the gut wall interact to propagate and transmit infectious prions to develop potential therapies that may prevent the progression of transmissible spongiform encephalopathies.


2002 ◽  
Vol 30 (4) ◽  
pp. 742-745 ◽  
Author(s):  
D. R. Brown

Transmissible spongiform encephalopathies are diseases of animals and humans that are also termed prion diseases. These diseases are linked together because a normal brain glycoprotein termed the prion protein is converted to a readily detectable protease-resistant isoform. There is now strong evidence to suggest that apart from this difference in resistance a major difference between the isoforms is that the normal prion protein binds copper and has an anti-oxidant function. Brains from Creutzfeldt-Jakob disease patients and brains from mice with experimental mouse scrapie have been shown to have changes in the levels of both copper and manganese. There is growing evidence that links prion diseases to disturbances of metal metabolism.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 770 ◽  
Author(s):  
Giulia Salzano ◽  
Gabriele Giachin ◽  
Giuseppe Legname

Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.


2013 ◽  
Vol 94 (6) ◽  
pp. 1435-1440 ◽  
Author(s):  
Sophie Halliez ◽  
Nathalie Chesnais ◽  
Giovanna Mallucci ◽  
Marthe Vilotte ◽  
Christelle Langevin ◽  
...  

In naturally acquired transmissible spongiform encephalopathies, the pathogenic agents or prions spread from the sites of initial peripheral uptake or replication to the brain where they cause progressive and fatal neurodegeneration. Routing via the peripheral nervous system is considered to be one of the main pathways to the central nervous system. Replication of prions in Schwann cells is viewed as a potentially important mechanism for efficient prion spread along nerves. Here we used a Cre-loxP mouse transgenetic approach to disrupt host-encoded prion protein (PrPC) specifically in myelinating Schwann cells. Despite the use of infection routes targeting highly myelinated nerves, there was no alteration in mouse prion pathogenesis, suggesting that conversion-dependent, centripetal spread of prions does not crucially rely on PrPC expressed by myelinating Schwann cells.


2018 ◽  
Author(s):  
Giulia Salzano ◽  
Martha Brennich ◽  
Giordano Mancini ◽  
Thanh Hoa Tran ◽  
Giuseppe Legname ◽  
...  

ABSTRACTPrions are pathological isoforms of the cellular prion protein (PrPC) responsible for transmissible spongiform encephalopathies (TSE). PrPC interacts with copper through unique octarepeat and non-octarepeat (non-OR) binding sites. Previous works on human PrPC suggest that copper binding to the non-OR region may have a role during prion conversion. The molecular details of copper coordination within the non-OR region are not well characterized. By means of small angle X-ray scattering (SAXS) and extended X-ray absorption fine structure (EXAFS) spectroscopy, we have investigated the Cu(II) structural effects on the protein folding and its coordination geometries when bound to the non-OR region of recombinant PrPC (recPrP) from animal species considered high or less resistant to TSE. As TSE-resistant model, we used ovine PrPC carrying the protective polymorphism at residues A136, R154 and R171 (OvPrP ARR); while as highly TSE-susceptible PrPC models we employed OvPrP with polymorphism V136, R154 and Q171 (OvPrP VRQ) and Bank vole recPrP (BvPrP). Our results reveal that Cu(II) affects the structural plasticity of the non-OR region leading to a more compacted conformation of recPrP. We also identified two Cu(II) coordinations in the non-OR region of these animal species. In type-1 coordination present in OvPrP ARR, Cu(II) is coordinated by four residues (S95, Q98, M109 and H111). Conversely, the type-2 coordination is present in OvPrP VRQ and BvPrP, where Cu(II) is coordinated by three residues (Q98, M109 and H111) and by one water molecule, making the non-OR region more flexible and open to the solvent. These changes in copper coordination in prion resistant and susceptible species provide new insights into the molecular mechanisms governing the resistance or susceptibility of certain species to TSE.


2004 ◽  
Vol 85 (11) ◽  
pp. 3483-3486 ◽  
Author(s):  
J.-Y. Madec ◽  
S. Simon ◽  
S. Lezmi ◽  
A. Bencsik ◽  
J. Grassi ◽  
...  

The central molecular event in transmissible spongiform encephalopathies, such as scrapie in sheep, is the accumulation in tissues of an abnormal isoform of the cellular prion protein. A previous investigation of 26 sheep showed that the accumulation of PrPres in brain correlated more with the prnp genotype than with the severity of the clinical disease. Here, the ability of a sandwich ELISA to detect PrPres distribution in the brain was demonstrated. Immunohistochemistry also strongly supported the hypothesis that the dorsal motor nucleus of the vagus nerve is the possible entry site in the brain for the scrapie agent. Remarkably, three asymptomatic (or possibly asymptomatic for scrapie) sheep carrying an allele known to be associated with clinical scrapie resistance (ARR), which were negative for the detection of PrPres by Western blotting and immunohistochemistry, were positive for the presence of PrPres by ELISA, raising the possibility of carriers resistant to the disease and possibly contributing to the persistence of scrapie in certain flocks.


2009 ◽  
Vol 90 (4) ◽  
pp. 1048-1053 ◽  
Author(s):  
Francesca Martucci ◽  
Pierluigi Acutis ◽  
Maria Mazza ◽  
Sabrina Nodari ◽  
Silvia Colussi ◽  
...  

To evaluate further the reactivity of prion-specific monoclonal antibodies containing the 89–112 or 136–158 prion protein (PrP) polypeptides, immunoprecipitations were performed on brain extracts from Italian bovines, sheep and goats with transmissible spongiform encephalopathies. No binding of IgG 89–112 or IgG 136–158 to PrP in normal brain extracts was detected. Conversely, both reagents immunoprecipitated PrP from bovine and bovine amyloidotic spongiform encephalopathies, and from typical and atypical scrapie brain extracts. The immunoprecipitated PrP bands mirrored the Western blot (WB) profile of the different prion strains, indicating universal affinity of two independent PrP regions for disease-associated PrP conformers regardless of species source and strain properties. Immunoprecipitation with motif-grafted antibodies increased the sensitivity of conventional detection methods based on centrifugation followed by WB, which was confirmed by assay of diluted samples using both methods. These reagents or derivative molecules may thus find broad applications in prion detection and research.


2021 ◽  
Vol 15 (1) ◽  
pp. 193-196
Author(s):  
Máximo Sanz-Hernández ◽  
Alfonso De Simone

AbstractTransmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders associated with the misfolding and aggregation of the human prion protein (huPrP). Despite efforts into investigating the process of huPrP aggregation, the mechanisms triggering its misfolding remain elusive. A number of TSE-associated mutations of huPrP have been identified, but their role at the onset and progression of prion diseases is unclear. Here we report the NMR assignments of the C-terminal globular domain of the wild type huPrP and the pathological mutant T183A. The differences in chemical shifts between the two variants reveal conformational alterations in some structural elements of the mutant, whereas the analyses of secondary shifts and random coil index provide indications on the putative mechanisms of misfolding of T183A huPrP.


Sign in / Sign up

Export Citation Format

Share Document