scholarly journals Deciphering copper coordination in the animal prion protein amyloidogenic domain

2018 ◽  
Author(s):  
Giulia Salzano ◽  
Martha Brennich ◽  
Giordano Mancini ◽  
Thanh Hoa Tran ◽  
Giuseppe Legname ◽  
...  

ABSTRACTPrions are pathological isoforms of the cellular prion protein (PrPC) responsible for transmissible spongiform encephalopathies (TSE). PrPC interacts with copper through unique octarepeat and non-octarepeat (non-OR) binding sites. Previous works on human PrPC suggest that copper binding to the non-OR region may have a role during prion conversion. The molecular details of copper coordination within the non-OR region are not well characterized. By means of small angle X-ray scattering (SAXS) and extended X-ray absorption fine structure (EXAFS) spectroscopy, we have investigated the Cu(II) structural effects on the protein folding and its coordination geometries when bound to the non-OR region of recombinant PrPC (recPrP) from animal species considered high or less resistant to TSE. As TSE-resistant model, we used ovine PrPC carrying the protective polymorphism at residues A136, R154 and R171 (OvPrP ARR); while as highly TSE-susceptible PrPC models we employed OvPrP with polymorphism V136, R154 and Q171 (OvPrP VRQ) and Bank vole recPrP (BvPrP). Our results reveal that Cu(II) affects the structural plasticity of the non-OR region leading to a more compacted conformation of recPrP. We also identified two Cu(II) coordinations in the non-OR region of these animal species. In type-1 coordination present in OvPrP ARR, Cu(II) is coordinated by four residues (S95, Q98, M109 and H111). Conversely, the type-2 coordination is present in OvPrP VRQ and BvPrP, where Cu(II) is coordinated by three residues (Q98, M109 and H111) and by one water molecule, making the non-OR region more flexible and open to the solvent. These changes in copper coordination in prion resistant and susceptible species provide new insights into the molecular mechanisms governing the resistance or susceptibility of certain species to TSE.

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 770 ◽  
Author(s):  
Giulia Salzano ◽  
Gabriele Giachin ◽  
Giuseppe Legname

Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
N. C. Ferreira ◽  
L. M. Ascari ◽  
A. G. Hughson ◽  
G. R. Cavalheiro ◽  
C. F. Góes ◽  
...  

ABSTRACTThe search for antiprion compounds has been encouraged by the fact that transmissible spongiform encephalopathies (TSEs) share molecular mechanisms with more prevalent neurodegenerative pathologies, such as Parkinson's and Alzheimer's diseases. Cellular prion protein (PrPC) conversion into protease-resistant forms (protease-resistant PrP [PrPRes] or the scrapie form of PrP [PrPSc]) is a critical step in the development of TSEs and is thus one of the main targets in the screening for antiprion compounds. In this work, three trimethoxychalcones (compounds J1, J8, and J20) and one oxadiazole (compound Y17), previously identifiedin vitroto be potential antiprion compounds, were evaluated through different approaches in order to gain inferences about their mechanisms of action. None of them changed PrPCmRNA levels in N2a cells, as shown by reverse transcription-quantitative real-time PCR. Among them, J8 and Y17 were effective in real-time quaking-induced conversion reactions using rodent recombinant PrP (rPrP) from residues 23 to 231 (rPrP23–231) as the substrate and PrPScseeds from hamster and human brain. However, when rPrP from residues 90 to 231 (rPrP90–231), which lacks the N-terminal domain, was used as the substrate, only J8 remained effective, indicating that this region is important for Y17 activity, while J8 seems to interact with the PrPCglobular domain. J8 also reduced the fibrillation of mouse rPrP23–231seeded within vitro-produced fibrils. Furthermore, most of the compounds decreased the amount of PrPCon the N2a cell surface by trapping this protein in the endoplasmic reticulum. On the basis of these results, we hypothesize that J8, a nontoxic compound previously shown to be a promising antiprion agent, may act by different mechanisms, since its efficacy is attributable not only to PrP conversion inhibition but also to a reduction of the PrPCcontent on the cell surface.


2013 ◽  
Vol 2013 ◽  
pp. 1-24 ◽  
Author(s):  
Ilaria Poggiolini ◽  
Daniela Saverioni ◽  
Piero Parchi

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein,PrPC, into the aggregate,β-sheet rich, amyloidogenic form,PrPSc. Increasing evidence indicates that distinctPrPScconformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern ofPrPScdistribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins,PrPSctoxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchoredPrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic formPrPScand its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity byPrPScaggregates.


2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


2001 ◽  
Vol 75 (10) ◽  
pp. 4673-4680 ◽  
Author(s):  
Suzette A. Priola ◽  
Joëlle Chabry ◽  
Kaman Chan

ABSTRACT In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.


2021 ◽  
Author(s):  
Maciej Gielnik ◽  
Aneta Szymanska ◽  
Xiaolin Dong ◽  
Jyri Jarvet ◽  
Zeljko M. Svedruzic ◽  
...  

Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in the protein misfolding, and metal imbalance may be part of TSE pathologies. PrPC is a combined Cu(II) and Zn(II) metal binding protein, where the main metal binding site is located in the octarepeat (OR) region. Here, we used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Upon metal binding, the OR region seems to adopt a transient antiparallel β-sheet hairpin structure. Fluorescence spectroscopy data indicates that under neutral conditions, the OR region can bind both Cu(II) and Zn(II) ions, whereas under acidic conditions it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of both metal ions to the OR region results in formation of β-hairpin structures. As formation of β-sheet structures is a first step towards amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSEs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maciej Gielnik ◽  
Michał Taube ◽  
Lilia Zhukova ◽  
Igor Zhukov ◽  
Sebastian K. T. S. Wärmländer ◽  
...  

AbstractThe cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, β-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.


2002 ◽  
Vol 9 (4) ◽  
pp. 245-252 ◽  
Author(s):  
France Mélot ◽  
Caroline Thielen ◽  
Thouraya Labiet ◽  
Sabine Eisher ◽  
Olivier Jolois ◽  
...  

The cellular prion protein (PrPc) is a glycolipid-anchored cell surface protein that usually exhibits three glycosylation states. Its post-translationally modified isoform, PrPsc, is involved in the pathogenesis of various transmissible spongiform encephalopathies (TSEs). In bovine species, BSE infectivity appears to be restricted to the central nervous system; few or no detectable infectivity is found in lymphoid tissues in contrast to scrapie or variant CJD. Since expression of PrPc is a prerequisite for prion replication, we have investigated PrPc expression by bovine immune cells. Lymphocytes from blood and five different lymph organs were isolated from the same animal to assess intra- and interindividual variability of PrPc expression, considering six individuals. As shown by flow cytometry, this expression is absent or weak on granulocytes but is measurable on monocytes, B and T cells from blood and lymph organs. The activation of the bovine cells produces an upregulation of PrPc. The results of our in vitro study of PrPc biosynthesis are consistent with previous studies in other species. Interestingly, western blotting experiments showed only one form of the protein, the diglycosylated band. We propose that the glycosylation state could explain the lack of infectivity of the bovine immune cells.


2006 ◽  
Vol 7 (1-2) ◽  
pp. 97-105 ◽  
Author(s):  
Scott P. Leach ◽  
M. D. Salman ◽  
Dwayne Hamar

Transmissible spongiform encephalopathies (TSEs) are a family of neurodegenerative diseases characterized by their long incubation periods, progressive neurological changes, and spongiform appearance in the brain. There is much evidence to show that TSEs are caused by an isoform of the normal cellular surface prion protein PrPC. The normal function of PrPC is still unknown, but it exhibits properties of a cupro-protein, capable of binding up to six copper ions. There are two differing views on copper's role in prion diseases. While one view looks at the PrPC copper-binding as the trigger for conversion to PrPSc, the opposing viewpoint sees a lack of PrPC copper-binding resulting in the conformational change into the disease causing isoform. Manganese and zinc have been shown to interact with PrPC as well and have been found in abnormal levels in prion diseases. This review addresses the interaction between select trace elements and the PrPC.


2006 ◽  
Vol 20 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Gwynivere A Davies ◽  
Adam R Bryant ◽  
John D Reynolds ◽  
Frank R Jirik ◽  
Keith A Sharkey

The gastrointestinal (GI) tract plays a central role in the pathogenesis of transmissible spongiform encephalopathies. These are human and animal diseases that include bovine spongiform encephalopathy, scrapie and Creutzfeldt-Jakob disease. They are uniformly fatal neurological diseases, which are characterized by ataxia and vacuolation in the central nervous system. Alhough they are known to be caused by the conversion of normal cellular prion protein to its infectious conformational isoform (PrPsc) the process by which this isoform is propagated and transported to the brain remains poorly understood. M cells, dendritic cells and possibly enteroendocrine cells are important in the movement of infectious prions across the GI epithelium. From there, PrPscpropagation requires B lymphocytes, dendritic cells and follicular dendritic cells of Peyer’s patches. The early accumulation of the disease-causing agent in the plexuses of the enteric nervous system supports the contention that the autonomic nervous system is important in disease transmission. This is further supported by the presence of PrPscin the ganglia of the parasympathetic and sympathetic nerves that innervate the GI tract. Additionally, the lymphoreticular system has been implicated as the route of transmission from the gut to the brain. Although normal cellular prion protein is found in the enteric nervous system, its role has not been characterized. Further research is required to understand how the cellular components of the gut wall interact to propagate and transmit infectious prions to develop potential therapies that may prevent the progression of transmissible spongiform encephalopathies.


Sign in / Sign up

Export Citation Format

Share Document