Ca2+ signalling in stomatal guard cells

2000 ◽  
Vol 28 (4) ◽  
pp. 476-481 ◽  
Author(s):  
M. R. McAinsh ◽  
J. E. Gray ◽  
A. M. Hetherington ◽  
C. P. Leckie ◽  
C. Ng

Ca2+ is a ubiquitous second messenger in the signal transduction pathway(s) by which stomatal guard cells respond to external stimuli. Increases in guard-cell cytosolic free Ca2+ concentration ([Ca2+]cyt) have been observed in response to stimuli that cause both stomatal opening and closure. In addition, several important components of Ca2+-based signalling pathways have been identified in guard cells, including the cADP-ribose and phospholipase C/Ins(1,4,5)P3-mediated Ca2+-mobilizing pathways. The central role of stimulus-induced increases in [Ca2+]cyt in guard-cell signal transduction has been clearly demonstrated in experiments examining the effects of modulating increases in [Ca2+]cyt on alterations in guard-cell turgor or the activity of ion channels that act as effectors in the guard-cell turgor response. In addition, the paradox that Ca2+ is involved in the transduction of signals that result in opposite end responses (stomatal opening and closure) might be accounted for by the generation of stimulus-specific Ca2+ signatures, such that increases in [Ca2+]cyt exhibit unique spatial and temporal characteristics.

1994 ◽  
Vol 1 ◽  
pp. 80
Author(s):  
K. Tomita ◽  
A. Owada ◽  
H. Nonoguchi ◽  
Y. Terada ◽  
F. Marumo

1990 ◽  
Vol 10 (2) ◽  
pp. 510-517
Author(s):  
G M Cole ◽  
D E Stone ◽  
S I Reed

The Saccharomyces cerevisiae GPA1, STE4, and STE18 genes encode products homologous to mammalian G-protein alpha, beta, and gamma subunits, respectively. All three genes function in the transduction of the signal generated by mating pheromone in haploid cells. To characterize more completely the role of these genes in mating, we have conditionally overexpressed GPA1, STE4, and STE18, using the galactose-inducible GAL1 promoter. Overexpression of STE4 alone, or STE4 together with STE18, generated a response in haploid cells suggestive of pheromone signal transduction: arrest in G1 of the cell cycle, formation of cellular projections, and induction of the pheromone-inducible transcript FUS1 25- to 70-fold. High-level STE18 expression alone had none of these effects, nor did overexpression of STE4 in a MATa/alpha diploid. However, STE18 was essential for the response, since overexpression of STE4 was unable to activate a response in a ste18 null strain. GPA1 hyperexpression suppressed the phenotype of STE4 overexpression. In addition, cells that overexpressed GPA1 were more resistant to pheromone and recovered more quickly from pheromone than did wild-type cells, which suggests that GPA1 may function in an adaptation response to pheromone.


Sign in / Sign up

Export Citation Format

Share Document