Serine proteases of the complement system

2000 ◽  
Vol 28 (5) ◽  
pp. 545-550 ◽  
Author(s):  
R. B. Sim ◽  
A. Laich

The complement system in blood plasma is a major mediator of innate immune defence. The function of complement is to recognize, then opsonize or lyse, particulate materials, including bacteria, yeasts and other microrganisms, host cell debris and altered host cells. Recognition occurs by binding of complement proteins to charge or saccharide arrays. After recognition, a series of serine proteases is activated, culminating in the assembly of complex unstable proteases called C3/C5 convertases. These activate the complement protein C3, which acts as an opsonin. The complement serine proteases include the closely related Clr, Cls, MASPs 1–3 (80–90 kDa), C2 and Factor B (100 kDa), Factor D (25 kDa) and Factor 1 (85 kDa). Each of these has unusually restricted specificity and low enzymic activity. The C1r, C1s and MASP group occur as proenzymes. When activated, they are regulated, like many plasma serine proteases, by a serpin, C1-inhibitor. C2 and Factor B, however, have complex multiple regulation by a group of complement proteins called the Regulation of Complement Activation (or RCA) proteins, whereas Factors I and D appear to have no natural inhibitors. Advances in structure determination and protein-protein interaction properties are leading to a more detailed understanding of the complement-system proteases, and are indicating possible new routes for potential therapeutic control of complement.

2004 ◽  
Vol 32 (1) ◽  
pp. 21-27 ◽  
Author(s):  
R.B. Sim ◽  
S.A. Tsiftsoglou

The complement system is a group of about 35 soluble and cell-surface proteins which interact to recognize, opsonize and clear or kill invading micro-organisms or altered host cells (e.g. apoptotic or necrotic cells). Complement is a major part of the innate immune system. Recognition proteins such as C1q, MBL (mannan-binding lectin) and ficolins bind to targets via charge or sugar arrays. Binding causes activation of a series of serine protease proenzymes, such as C1r, C1s and MASP2 (MBL-associated serine protease 2), which in turn activate the atypical serine proteases factor B and C2, which then activate the major opsonin of the system, C3. Activated C3 binds covalently to targets, and is recognized by receptors on phagocytic cells. Two of the complement proteases, factors D and I, circulate not as proenzymes, but in activated form, and they have no natural inhibitors; their substrates are transient protein complexes (e.g. C3bB and C3bH) which form during complement activation. Factor B and C2 also have no natural inhibitor; they are active only when proteolytically cleaved and bound in an unstable, short-lived complex with C3b or C4b. C1r, C1s and the MASPs, in contrast, are regulated more conventionally by the natural serpin, C1-inhibitor. Complement proteases in general have very narrow specificity, and low substrate turnover with both natural and synthetic substrates. Excessive activation of complement is inflammatory, and causes tissue damage (e.g. in rheumatoid arthritis, or in ischaemia/reperfusion injury). Substances that regulate complement activation are likely to be useful in the regulation of inflammation. Complement activation might potentially be controlled at many different steps. Much attention has been focused on controlling the formation or activity of the protease complexes C3bBb and C4b2a (containing activated factor B and C2 respectively), as these generate the inflammatory peptides C3a and C5a.


2021 ◽  
Vol 11 (12) ◽  
pp. 1256
Author(s):  
I. Erkin Acar ◽  
Esther Willems ◽  
Eveline Kersten ◽  
Jenneke Keizer-Garritsen ◽  
Else Kragt ◽  
...  

Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. The complement system has been identified as one of the main AMD disease pathways. We performed a comprehensive expression analysis of 32 complement proteins in plasma samples of 255 AMD patients and 221 control individuals using mass spectrometry-based semi-quantitative multiplex profiling. We detected significant associations of complement protein levels with age, sex and body-mass index (BMI), and potential associations of C-reactive protein, factor H related-2 (FHR-2) and collectin-11 with AMD. In addition, we confirmed previously described associations and identified new associations of AMD variants with complement levels. New associations include increased C4 levels for rs181705462 at the C2/CFB locus, decreased vitronectin (VTN) levels for rs11080055 at the TMEM97/VTN locus and decreased factor I levels for rs10033900 at the CFI locus. Finally, we detected significant associations between AMD-associated metabolites and complement proteins in plasma. The most significant complement-metabolite associations included increased high density lipoprotein (HDL) subparticle levels with decreased C3, factor H (FH) and VTN levels. The results of our study indicate that demographic factors, genetic variants and circulating metabolites are associated with complement protein components. We suggest that these factors should be considered to design personalized treatment approaches and to increase the success of clinical trials targeting the complement system.


1980 ◽  
Vol 210 (1181) ◽  
pp. 477-498 ◽  

The assembly and activation of the early components of complement, after their interaction with antibody–antigen complexes, are described in terms of the structures of the different proteins taking part. C1q, a molecule of unique half collagen-half globular structure, binds to the second constant domain of the antibody molecules through its six globular heads. A tetrameric complex of C1r 2 –C1s 2 binds to the collagenous tails and leads to formation of the serine-type proteases C1 ¯ r and C1 ¯ s. C 1¯ s activates C4, which forms a covalent bond between its α' chain and the Fab section of the antibody. C2 is also activated by C1 ¯ s and associates with the bound C4 ¯ molecule to form C42 ¯ , a labile protease that activates C3, but which loses activity as the C2 ¯ peptide chains dissociate from C4 ¯ . C2, by analogy with factor B, the equivalent component of the alternative pathway of activation, appears to be a novel type of serine protease with a similar catalytic site but different activation mechanism to the serine proteases that have been described previously.


2007 ◽  
Vol 293 (2) ◽  
pp. F555-F564 ◽  
Author(s):  
Amanda M. Lenderink ◽  
Katharine Liegel ◽  
Danica Ljubanović ◽  
Kathrin E. Coleman ◽  
Gary S. Gilkeson ◽  
...  

The complement system effectively identifies and clears invasive pathogens as well as injured host cells. Uncontrolled complement activation can also contribute to tissue injury, however, and inhibition of this system may ameliorate many types of inflammatory injury. Several studies have demonstrated that the filtration of complement proteins into the renal tubules, as occurs during proteinuric renal disease, causes tubular inflammation and injury. In the present study, we tested the hypothesis that activation of the complement system in the urinary space requires an intact alternative pathway. Using a model of adriamycin-induced renal injury, which induces injury resembling focal segmental glomerulosclerosis, we examined whether mice deficient in factor B would be protected from the development of progressive tubulointerstitial injury. Complement activation was attenuated in the glomeruli and tubulointerstitium of mice with congenital deficiency of factor B ( fB−/−) compared with wild-type controls, demonstrating that complement activation does occur through the alternative pathway. Deficiency in factor B did not significantly protect the mice from tubulointerstitial injury. However, treatment of wild-type mice with an inhibitory monoclonal antibody to factor B did delay the development of renal failure. These results demonstrate that complement activation in this nonimmune complex-mediated model of progressive renal disease requires an intact alternative pathway.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi212-vi212
Author(s):  
Rebecca Rosberg ◽  
Karolina Smolag ◽  
Vasiliki Pantazopoulou ◽  
Anna Blom ◽  
Alexander Pietras

Abstract Glioblastoma is the most common and aggressive primary brain tumor in adults. Despite treatment through surgery, irradiation and chemotherapy all patients suffer recurrence of treatment-resistant tumors and the survival prognosis remains poor. The recurrence of tumors is driven by the invasive nature of the tumor and appears to be related to cells with stem like characteristics that are present in perivascular and hypoxic niches. Previous studies from our lab showed that astrocytes grown in hypoxic or irradiated conditions increase the stemness of glioma cells. The altered behavior of the astrocytes leads to increased cell size and a change in secreted cytokines. Reactive astrocytes are important in other central nervous system (CNS) diseases involved in tissue repair such as traumatic brain injury and Alzheimer’s disease. Interestingly, in several neurological diseases, reactive astrocytes upregulate complement proteins, especially complement component 3 (C3). However, it remains relatively unexplored how these complement proteins in stromal astrocytes are expressed in glioblastoma. Tissue sections from our glioma mouse model shows presence of C3 around hypoxic areas where there is an abundance of astrocytes. We have also shown that astrocytes grown at 21%, 1% and 0.1% oxygen upregulate complement protein C3 as well as other proteins associated with a more extensive infiltrative phenotype of glioblastoma. Datasets with human patients showed that C3 expression was correlated with higher grade tumors and that patients with tumors expressing C3 had more risk to get new tumors after primary treatment (including but not limited to radiotherapy). In this ongoing project, we are investigating whether activation of the complement system in the tumor microenvironment contributes to tumor progression. The upregulation of C3 in astrocytes in hypoxic conditions could therefore through local complement activation possibly led to tumor promoting signaling leading to beneficial survival of therapies of nearby glioma cells.


2020 ◽  
Vol 88 (9) ◽  
Author(s):  
Sarah Sze Wah Wong ◽  
Irene Daniel ◽  
Jean-Pierre Gangneux ◽  
Jeya Maheshwari Jayapal ◽  
Hélène Guegan ◽  
...  

ABSTRACT Even though both cellular and humoral immunities contribute to host defense, the role played by humoral immunity against the airborne opportunistic fungal pathogen Aspergillus fumigatus has been underexplored. In this study, we aimed at deciphering the role of the complement system, the major humoral immune component, against A. fumigatus. Mass spectrometry analysis of the proteins extracted from A. fumigatus conidial (asexual spores and infective propagules) surfaces opsonized with human serum indicated that C3 is the major complement protein involved. Flow cytometry and immunolabeling assays further confirmed C3b (activated C3) deposition on the conidial surfaces. Assays using cell wall components of conidia indicated that the hydrophobin RodAp, β-(1,3)-glucan (BG) and galactomannan (GM) could efficiently activate C3. Using complement component-depleted sera, we showed that while RodAp activates C3 by the alternative pathway, BG and GM partially follow the classical and lectin pathways, respectively. Opsonization facilitated conidial aggregation and phagocytosis, and complement receptor (CR3 and CR4) blockage on phagocytes significantly inhibited phagocytosis, indicating that the complement system exerts a protective role against conidia by opsonizing them and facilitating their phagocytosis mainly through complement receptors. Conidial opsonization with human bronchoalveolar lavage fluid (BALF) confirmed C3 to be the major complement protein interacting with conidia. Nevertheless, complement C2 and mannose-binding lectin (MBL), the classical and lectin pathway components, respectively, were not identified, indicating that BALF activates the alternative pathway on the conidial surface. Moreover, the cytokine profiles were different upon stimulation of phagocytes with serum- and BALF-opsonized conidia, highlighting the importance of studying interaction of conidia with complement proteins in their biological niche.


Author(s):  
M. Jalink ◽  
E. C. W. de Boer ◽  
D. Evers ◽  
M. Q. Havinga ◽  
J. M. I. Vos ◽  
...  

AbstractThe complement system is an important defense mechanism against pathogens; however, in certain pathologies, the system also attacks human cells, such as red blood cells (RBCs). In paroxysmal nocturnal hemoglobinuria (PNH), RBCs lack certain complement regulators which sensitize them to complement-mediated lysis, while in autoimmune hemolytic anemia (AIHA), antibodies against RBCs may initiate complement-mediated hemolysis. In recent years, complement inhibition has improved treatment prospects for these patients, with eculizumab now the standard of care for PNH patients. Current complement inhibitors are however not sufficient for all patients, and they come with high costs, patient burden, and increased infection risk. This review gives an overview of the underlying pathophysiology of complement-mediated hemolysis in PNH and AIHA, the role of therapeutic complement inhibition nowadays, and the high number of complement inhibitors currently under investigation, as for almost every complement protein, an inhibitor is being developed. The focus lies with novel therapeutics that inhibit complement activity specifically in the pathway that causes pathology or those that reduce costs or patient burden through novel administration routes.


2015 ◽  
Vol 42 (7) ◽  
pp. 1252-1258 ◽  
Author(s):  
Christine Petri ◽  
Steffen Thiel ◽  
Jens Christian Jensenius ◽  
Troels Herlin

Objective.The complement system plays a crucial role in the pathogenesis of inflammatory processes. The lectin pathway of the complement system is activated through the recognition of pathogens by soluble pattern recognition molecules (PRM), i.e., mannan-binding lectin (MBL), collectin-LK, and the ficolins. PRM are reportedly correlated to disease activity in rheumatoid arthritis (RA). The aim was to evaluate the pathogenic role of PRM in juvenile idiopathic arthritis (JIA).Methods.We measured MBL, M-ficolin, H-ficolin, MBL-associated serine proteases (MASP) 1, MASP-2, MASP-3, and 2 alternative splice products, MBL-associated protein (MAp) 44 and MAp19, in plasma and synovial fluid (SF) of children with persistent oligoarticular (n = 109 in plasma, n = 38 in SF) and systemic JIA (n = 19 in plasma, n = 11 in SF). The concentrations of the proteins were measured by in-house time-resolved immunofluorometric assays.Results.We observed significantly higher levels of M-ficolin, MASP-1, MASP-2, and MASP-3 in plasma and SF from patients with systemic JIA compared with persistent oligoarticular JIA (p < 0.001). In paired samples of plasma and SF from 47 patients with oligoarticular and systemic JIA, we observed higher concentrations in plasma for both subtypes for 7 of the measured proteins while the reverse relationship was observed for MASP-3. M-ficolin and MASP-2 correlated to erythrocyte sedimentation rate, C-reactive protein, white blood cell count, and platelet count (p < 0.001). M-ficolin was in addition related to the number of active joints and inversely related to hemoglobin levels.Conclusion.Our results point to plasma M-ficolin and MASP-2 as inflammatory markers in JIA. The levels of all proteins are higher in plasma than in SF, except for MASP-3, indicating that MASP-3 may be produced locally in joints.


2003 ◽  
Vol 10 (2) ◽  
pp. 216-220
Author(s):  
Marlene Pereira de Carvalho Florido ◽  
Patrícia Ferreira de Paula ◽  
Lourdes Isaac

ABSTRACT Due to the increasing numbers of reported clinical cases of complement deficiency in medical centers, clinicians are now more aware of the role of the complement system in the protection against infections caused by microorganisms. Therefore, clinical laboratories are now prepared to perform a number of diagnostic tests of the complement system other than the standard 50% hemolytic component assay. Deficiencies of alternative complement pathway proteins are related to severe and recurrent infections; and the application of easy, reliable, and low-cost methods for their detection and distinction are always welcome, notably in developing countries. When activation of the alternative complement pathway is evaluated in hemolytic agarose plates, some but not all human sera cross-react to form a late linear lysis. Since the formation of this linear lysis is dependent on C3 and factor B, it is possible to use late linear lysis to routinely screen for the presence of deficiencies of alternative human complement pathway proteins such as factor B. Furthermore, since linear lysis is observed between normal human serum and primary C3-deficient serum but not between normal human serum and secondary C3-deficient serum caused by the lack of factor H or factor I, this assay may also be used to discriminate between primary and secondary C3 deficiencies.


2021 ◽  
Vol 100 (2) ◽  
pp. 40-48
Author(s):  
A.G. Rumyantsev ◽  
◽  
A.G. Rumyantsev ◽  
O.M. Demina ◽  
◽  
...  

It has been shown that the inflammatory response in acne develops at the early subclinical stages of the disease, sometimes before the formation of comedones. It is known that an important component of the innate immune system is the complement system, which includes more than 60 components, including 9 basic proteins (C1-C9), a variety of activation products (C3a, C3b, iC3b, C3d and C3dg), regulatory and inhibitory molecules [factor H, fH-like protein 1 (FHL1), CR1 (CD35), C4b-binding protein (C4BP), C1inh and vitronectin], proteases and secreted enzymes (factor B, factor D, C3bBb and C4bC2b), as well as receptors for effector molecules [C3aR, C5aR, C5L2 and C1q receptor (C1qR)]. The compliment is the central part of innate immunity, which is the first line of protection against alien and altered host cells. The objectives of this study were to determine and analyze the variants of the nucleotide sequence of the genes of the complement system C1QA, C1S, C2, C3, C5, C6, C7, C8A, C8B, C8G, C9 in patients with severe acne. Materials and methods of research: To achieve the target a prospective open non-randomized one-center study was carried out in 2017–2020. Under our supervision in the clinical setting at the Department of Skin Diseases and Cosmetology of the Pirogov Russian National Research Medical University, there were 50 patients in the main group and 20 participants in the comparison group (70 people in total) (42/60% men and 28/40% women) aged 15 to 46 years (median – 22,1 years). Molecular genetic diagnostics was performed in all 70 patients of the main and control groups by the method of high-throughput DNA sequencing – next-generation sequencing (NGS). Results: when analyzing the nucleotide sequence variants of the complement system genes identified in our study, it is shown that the severe form of acne probably has an association (4 SNPs of the C8A gene, 1 SNPs of the C8B gene, 2 SNPs of the C1S gene, 3 SNPs of the C3 gene, 2 SNPs of the C9 gene, 1 SNPs of the C7 gene, 1 SNPs of the C6 gene, 1 SNPs of the C2 gene, 2 SNPs of the C5 gene, 2 SNPs of the C8G gene), 13 SNPs of the complement system genes in introns (1 SNPs of the C8A gene, 1 SNPs of the C8B gene, 2 SNPs of the C1S gene, 1 SNPs of the C3 gene, 1 SNPs of the C7 gene, 2 SNPs of the C6 gene, 4 SNPs of the C5 gene, 1 SNPs of C8G gene), 6 SNPs of the complement system genes (2 SNPs of the C8B gene: one SNPs each in the 3'UTR and 5'UTR zones; 3 SNPs of the C3 gene in the 5'UTR zone, 1 SNPs of the C7 gene in the 3'UTR zone). Two mutations of the frame shift of the C2 gene (frameshift deletion) and the C9 gene (rs748464075, frameshift insertion) seem to have a protective effect in the development of acne. Conclusion: the obtained variants of the nucleotide sequence of the genes of the complement system C1QA, C1S, C2, C3, C5, C6, C7, C8A, C8B, C8G, C9, apparently, are associated with the formation of severe acne and cause an imbalance of the components of the complement system. It can cause a defect in chemotactic and phagocytic reactions, and as a result a disturbance of the regulation of the inflammatory reaction with chronization of the skin process occures. Thus, results of studies carried out, revealed – for the first time – polymorphic loci of genes of components of the complement system, the imbalance of which is the pathophysiological mechanism of acne.


Sign in / Sign up

Export Citation Format

Share Document