An overview of the fission yeast septation initiation network (SIN)

2008 ◽  
Vol 36 (3) ◽  
pp. 411-415 ◽  
Author(s):  
Andrea Krapp ◽  
Viesturs Simanis

The fission yeast septation initiation network, or SIN, is a signal transduction network that is required for septum formation in Schizosaccharomyces pombe. Its activity is tightly regulated through the cell cycle, to ensure proper co-ordination of mitosis and cytokinesis. SIN signalling requires three protein kinases for its function and is mediated by a ras-superfamily GTPase. We discuss the elements of the SIN and how they are regulated.

2003 ◽  
Vol 2 (3) ◽  
pp. 510-520 ◽  
Author(s):  
Quan-Wen Jin ◽  
Dannel McCollum

ABSTRACT Cytokinesis in the fission yeast Schizosaccharomyces pombe is regulated by a signaling pathway termed the septation initiation network (SIN). The SIN is essential for initiation of actomyosin ring constriction and septum formation. In a screen to search for mutations that can rescue the sid2-250 SIN mutant, we obtained scw1-18. Both the scw1-18 mutant and the scw1 deletion mutant (scw1Δ mutant), have defects in cell separation. Both the scw1-18 and scw1Δ mutations rescue the growth defects of not just the sid2-250 mutant but also the other temperature-sensitive SIN mutants. Other cytokinesis mutants, such as those defective for actomyosin ring formation, are not rescued by scw1Δ. scw1Δ does not seem to rescue the SIN by restoring SIN signaling defects. However, scw1Δ may function downstream of the SIN to promote septum formation, since scw1Δ can rescue the septum formation defects of the cps1-191β-1,3-glucan synthase mutant, which is required for synthesis of the primary septum.


1999 ◽  
Vol 112 (14) ◽  
pp. 2313-2321 ◽  
Author(s):  
L. Cerutti ◽  
V. Simanis

In the fission yeast Schizosaccharomyces pombe, the onset of septum formation is induced by a signal transduction network involving several protein kinases and a GTPase switch. One of the roles of the spg1p GTPase is to localise the cdc7p protein kinase to the poles of the mitotic spindle, from where the onset of septation is thought to be signalled at the end of mitosis. Immunofluorescence studies have shown that cdc7p is located on both spindle pole bodies early in mitosis, but only on one during the later stages of anaphase. This is mediated by inactivation of spg1p on one pole before the other. The GAP for spg1p is a complex of two proteins, cdc16p and byr4p. Localisation of cdc16p and byr4p by indirect immunofluorescence during the mitotic cell cycle showed that both proteins are present on the spindle pole body in interphase cells. During mitosis, byr4p is seen first on both poles of the spindle, then on only one. This occurs prior to cdc7p becoming asymmetric. In contrast, the signal due to cdc16p decreases to a low level during early mitosis, before being seen strongly on the same pole as byr4p. Double staining indicates that this is the opposite pole to that which retains cdc7p in late anaphase. Examination of the effect of inactivating cdc16p at various stages of the cell cycle suggests that cdc16p, together with cdc2p plays a role in restraining septum formation during interphase. The asymmetric inactivation of spg1p is mediated by recruitment of the cdc16p-byr4p GAP to one of the poles of the spindle before the other, and the asymmetry of the spindle pole bodies may be established early during mitosis. Moreover, the spindle pole bodies appear to be non-equivalent even after division has been completed.


2005 ◽  
Vol 277-279 ◽  
pp. 1-6 ◽  
Author(s):  
Young Joo Jang ◽  
Young Sook Kil ◽  
Jee Hee Ahn ◽  
Jae Hoon Ji ◽  
Jong Seok Lim ◽  
...  

The fission yeast, Schizosaccharomyces pombe is a single-celled free-living fungus that shares many features with cells of more complicated eukaryotes. Many of the genes required for the cell-cycle control, proteolysis, protein modification, and RNA splicing are highly conserved with those of higher eukaryotes. Moreover, fission yeast has the merit of genetics and its genetic system is already well characterized. As such, the current study evaluated the use of a fission yeast system as a tool for the functional study of mammalian genes and attempted to set up an assay system for novel genes. Since the phenotypes of a deletion mutant and the overexpression of a gene are generally analyzed for a functional study of specific genes in yeast, the present study used overexpression phenotypes to study the functions of mammalian genes. Therefore, based on using a thiamine-repressive promoter, two mammalian genes were expressed in fission yeast, and their overexpressed phenotypes compared with those in mammalian cells. The phenotypes resulting from overexpression were analyzed using a FACS, which analyzes the DNA contents, and a microscope. One of the selected genes was the mammalian Polo-like kinase 1 (Plk1), which is activated and plays a role in the mitotic phase of the cell division cycle. The overexpression of various constructs of Plk1 in the HeLa cells caused cell cycle defects, suggesting that the ectopic Plk1s blocked the endogenous Plk1 in the cells. As expected, when the constructs were overexpressed in the fission yeast system, the cells were arrested in mitosis and defected at the end of mitosis. As such, this data suggests that the Plk1-overexpressed phenotypes were similar in the mammalian cells and the fission yeast, thereby enabling the mammalian Plk1 functions to be approximated in the fission yeast. The other selected gene was the N-Myc downstream-regulated gene 2 (ndrg2), which is upregulated during cell differentiation, yet still not well characterized. When the ndrg2 gene was overexpressed in the fission yeast, the cells contained multi-septa. The septa were positioned well, yet their number increased per cell. Therefore, this gene was speculated to block cell division in the last stage of the cell cycle, making the phenotype potentially useful for explaining cell growth and differentiation in mammalian cells. Accordingly, fission yeast is demonstrated to be an appropriate species for the functional study of mammalian genes.


1993 ◽  
Vol 238-238 (1-2) ◽  
pp. 241-251 ◽  
Author(s):  
Maria-Jose Fernandez Sarabia ◽  
Christopher McInerny ◽  
Pamela Harris ◽  
Colin Gordon ◽  
Peter Fantes

1986 ◽  
Vol 86 (1) ◽  
pp. 207-215
Author(s):  
J. Creanor ◽  
J.M. Mitchison

In confirmation of earlier results, nucleoside diphosphokinase is shown to be a ‘step’ enzyme in Schizosaccharomyces pombe with a sharp doubling in activity at the beginning of the cell cycle. These doubling steps occur at the same time in the cycle in the smaller cells of the mutant wee1.6. An important result is that the activity steps persist with normal cell cycle timing after a block to the DNA-division cycle imposed by the cycle mutants cdc2.33 and cdc2.33wee1.6. This is clear proof that oscillatory controls of some cell cycle events can persist after the main periodic events of the DNA-division cycle have been abolished.


1978 ◽  
Vol 33 (1) ◽  
pp. 399-411
Author(s):  
J. Creanor

Oxygen uptake was measured in synchronous cultures of the fission yeast Schizosaccharomyces pombe. The rate of oxygen uptake was found to increase in a step-wise manner at the beginning of the cycle and again in the middle of the cycle. The increases in rate were such that overall, oxygen uptake doubled in rate once per cell cycle. Addition of inhibitors of DNA synthesis or nuclear division to a synchronous culture did not affect the uptake of oxygen. In an induced synchronous culture, in which DNA synthesis, cell division, and nuclear division, but not ‘growth’ were synchronized, oxygen uptake increased continuously in rate and did not show the step-wise rises which were shown in the selection-synchronized culture. These results were compared with previous measurements of oxygen uptake in yeast and an explanation is suggested for the many different patterns which have been reported.


Sign in / Sign up

Export Citation Format

Share Document