The role of UBL domains in ubiquitin-specific proteases

2012 ◽  
Vol 40 (3) ◽  
pp. 539-545 ◽  
Author(s):  
Alex C. Faesen ◽  
Mark P.A. Luna-Vargas ◽  
Titia K. Sixma

Ubiquitin conjugation and deconjugation provides a powerful signalling system to change the fate of its target enzymes. Ubiquitination levels are organized through a balance between ubiquitinating E1, E2 and E3 enzymes and deubiquitination by DUBs (deubiquitinating enzymes). These enzymes are tightly regulated to control their activity. In the present article, we discuss the different ways in which DUBs of the USP (ubiquitin-specific protease) family are regulated by internal domains with a UBL (ubiquitin-like) fold. The UBL domain in USP14 is important for its localization at the proteasome, which enhances catalysis. In contrast, a UBL domain in USP4 binds to the catalytic domain and competes with ubiquitin binding. In this process, the UBL domain mimics ubiquitin and partially inhibits catalysis. In USP7, there are five consecutive UBL domains, of which the last two affect catalytic activity. Surprisingly, they do not act like ubiquitin and activate catalysis rather than inhibiting it. These C-terminal UBL domains promote a conformational change that allows ubiquitin binding and organizes the catalytic centre. Thus it seems that UBL domains have different functions in different USPs. Other proteins can modulate the roles of UBL domains in USP4 and USP7. On one hand, the inhibition of USP4 can be relieved when the UBL is sequestered by another USP. On the other, the activation of USP7 is increased, when the UBL-activated state is stabilized by allosteric binding of GMP synthetase. Altogether, UBL domains appear to be able to regulate catalytic activity in USPs, but they can use widely different mechanisms of action, in which they may, as in USP4, or may not, as in USP7, use the direct resemblance to ubiquitin.

Author(s):  
Wenjing Zhu ◽  
Dandan Zheng ◽  
Dandan Wang ◽  
Lehe Yang ◽  
Chengguang Zhao ◽  
...  

The balance of ubiquitination and deubiquitination plays diverse roles in regulating protein stability and cellular homeostasis. Deubiquitinating enzymes catalyze the hydrolysis and removal of ubiquitin chains from target proteins and play critical roles in various disease processes, including cancer, immune responses to viral infections and neurodegeneration. This article aims to summarize roles of the deubiquitinating enzyme ubiquitin-specific protease 25 (USP25) in disease onset and progression. Previous studies have focused on the role of USP25 in antiviral immunity and neurodegenerative diseases. Recently, however, as the structural similarities and differences between USP25 and its homolog USP28 have become clear, mechanisms of action of USP25 in cancer and other diseases have been gradually revealed.


2015 ◽  
Vol 471 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Yi Wen ◽  
Li Shi ◽  
Yiluan Ding ◽  
Rong Cui ◽  
Wen-tian He ◽  
...  

We have characterized the structure and function of the N-terminal UBR of Usp28 in this study. Our findings are helpful for a better understanding of the underlying molecular mechanism in the control of catalytic activity of DUBs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guang-Fei Yang ◽  
Xin Zhang ◽  
Yi-Ge Su ◽  
Ren Zhao ◽  
Yan-Yang Wang

AbstractThe balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.


2020 ◽  
Vol 20 (9) ◽  
pp. 689-699
Author(s):  
Xuemeng Lei ◽  
Xukun Li ◽  
Hongyan Chen ◽  
Zhihua Liu

Background: Ubiquitin specific protease 48 (USP48) is a member of the deubiquitinating enzymes (DUBs) family. However, the function of USP48 in ovarian cancer remains unclear. Objective: The present study reveals that USP48 knockdown could significantly inhibit cell migration and invasion in ES2, 3AO and A2780 cells, without affecting cell proliferation. Methods: After carboplatin (CBP) treatment, the USP48 ablation increases the apoptosis rate, and the cleaved PARP and cleaved caspase 3 expression levels in ES2, 3AO and A2780 cells. The subcutaneous tumor and intraperitoneally injected experiments demonstrated that the USP48 knockdown significantly increases responsiveness to CBP, and alleviates the metastasis in vivo. Meanwhile, USP48 deficiency results in the improved survival of mice. Results: Finally, the analysis of clinical samples and the TCGA and Kaplan-Meier Plot database revealed that the high expression of USP48 in ovarian cancer patients is associated with poor survival and resistance to CBP therapy. Conclusion: In summary, USP48 may be a potential therapeutic target for ovarian cancer patients.


Author(s):  
Zhengru Liu ◽  
Mingming Qi ◽  
Shan Tian ◽  
Qian Yang ◽  
Jian Liu ◽  
...  

Ubiquitin-specific protease 25 (USP25) plays an important role in inflammation and immunity. However, the role of USP25 in acute pancreatitis (AP) is still unclear. To evaluate the role of USP25 in AP, we conducted research on clinical AP patients, USP25wild-type(WT)/USP25 knockout (USP25−/−) mice, and pancreatic acinar cells. Our results showed that serum USP25 concentration was higher in AP patients than in healthy controls and was positively correlated with disease severity. AP patients’ serum USP25 levels after treatment were significantly lower than that at the onset of AP. Moreover, USP25 expression was upregulated in cerulein-induced AP in mice, while USP25 deficiency attenuates AP and AP-related multiple organ injury. In vivo and in vitro studies showed that USP25 exacerbates AP by promoting the release of pro-inflammatory factors and destroying tight junctions of the pancreas. We showed that USP25 aggravates AP and AP-related multiple organ injury by activating the signal transducer and activator of transcription 3 (STAT3) pathway. Targeting the action of USP25 may present a potential therapeutic option for treating AP.


2019 ◽  
Vol 110 (1-2) ◽  
pp. 119-129 ◽  
Author(s):  
Antonella Sesta ◽  
Maria Francesca Cassarino ◽  
Mariarosa Terreni ◽  
Alberto G. Ambrogio ◽  
Laura Libera ◽  
...  

Background: Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have recently been shown to occur in ACTH-secreting pituitary adenomas, thus calling attention to the ubiquitin system in corticotrope adenomas. Objectives: Assess the consequences of USP8 mutations and establish the role of ubiquitin on ACTH turnover in human ACTH-secreting pituitary adenomas. Methods: USP8 mutation status was established in 126 ACTH-secreting adenomas. Differences in ACTH secretion and POMC expression from adenoma primary cultures and in microarray gene expression profiles from archival specimens were sought according to USP8 sequence. Ubiquitin/ACTH coimmunoprecipitation and incubation with MG132, a proteasome inhibitor, were performed in order to establish whether ubiquitin plays a role in POMC/ACTH degradation in corticotrope adenomas. Results: USP8 mutations were identified in 29 adenomas (23%). Adenomas presenting USP8 mutations secreted greater amounts of ACTH and expressed POMC at higher levels compared to USP wild-type specimens. USP8 mutant adenomas were also more sensitive to modulation by CRH and dexamethasone in vitro. At microarray analysis, genes associated with endosomal protein degradation and membrane components were downregulated in USP8 mutant adenomas as were AVPR1B, IL11RA, and PITX2. Inhibition of the ubiquitin-proteasome pathway increased ACTH secretion and POMC itself proved a target of ubiquitylation, independently of USP8 sequence status. Conclusions: Our study has shown that USP8 mutant ACTH-secreting adenomas present a more “typical” corticotrope phenotype and reduced expression of several genes associated with protein degradation. Further, ubiquitylation is directly involved in intracellular ACTH turnover, suggesting that the ubiquitin-proteasome system may represent a target for treatment of human ACTH-secreting adenomas.


2016 ◽  
Vol 12 (5) ◽  
pp. 3123-3126 ◽  
Author(s):  
Giovanna Carrà ◽  
Cristina Panuzzo ◽  
Sabrina Crivellaro ◽  
Deborah Morena ◽  
Riccardo Taulli ◽  
...  

2020 ◽  
Vol 219 ◽  
pp. 103734 ◽  
Author(s):  
Virgínia Campos Silvestrini ◽  
Carolina Hassibe Thomé ◽  
Daniele Albuquerque ◽  
Camila de Souza Palma ◽  
Germano Aguiar Ferreira ◽  
...  

Pancreas ◽  
2006 ◽  
Vol 33 (4) ◽  
pp. 471
Author(s):  
T. Ishiwata ◽  
K. Cho ◽  
S. Ishiwata ◽  
Y. Fujiwata ◽  
T. Fujii ◽  
...  

2016 ◽  
Vol 113 (12) ◽  
pp. 3269-3274 ◽  
Author(s):  
Colin A. Smith ◽  
David Ban ◽  
Supriya Pratihar ◽  
Karin Giller ◽  
Maria Paulat ◽  
...  

Many biological processes depend on allosteric communication between different parts of a protein, but the role of internal protein motion in propagating signals through the structure remains largely unknown. Through an experimental and computational analysis of the ground state dynamics in ubiquitin, we identify a collective global motion that is specifically linked to a conformational switch distant from the binding interface. This allosteric coupling is also present in crystal structures and is found to facilitate multispecificity, particularly binding to the ubiquitin-specific protease (USP) family of deubiquitinases. The collective motion that enables this allosteric communication does not affect binding through localized changes but, instead, depends on expansion and contraction of the entire protein domain. The characterization of these collective motions represents a promising avenue for finding and manipulating allosteric networks.


Sign in / Sign up

Export Citation Format

Share Document