iPS models of Parkin and PINK1

2015 ◽  
Vol 43 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Aleksandar Rakovic ◽  
Philip Seibler ◽  
Christine Klein

Parkinson disease (PD) is a degenerative disorder of the central nervous system resulting from depletion of dopaminergic neurons and currently remains incurable despite enormous international research efforts. The development of induced pluripotent stem cell (iPSC) technology opened up the unique possibility of studying disease mechanisms in human tissue that was otherwise not accessible, such as the brain. Of particular interest are the monogenetic forms of PD as they closely resemble the more common ‘idiopathic’ PD and, through the mutated protein, provide a clear research target in iPSC-derived neurons. Recessively inherited Parkin and PTEN-induced putative kinase 1 (PINK1) mutations have been investigated in this context and the present review describes the first insights gained from studies in iPSC-derived dopaminergic neurons, which comprise abnormalities in mitochondrial and dopamine homoeostasis, microtubular stability and axonal outgrowth. These new models of PD have a high translational potential that includes the identification of druggable targets, testing of known and novel therapeutic agents in the disease-relevant tissue using well-defined read-outs and potential regenerative approaches.

mSphere ◽  
2021 ◽  
Author(s):  
Lisa Bauer ◽  
Bas Lendemeijer ◽  
Lonneke Leijten ◽  
Carmen W. E. Embregts ◽  
Barry Rockx ◽  
...  

Infections with the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are often associated with neurological complications. Evidence suggests that SARS-CoV-2 enters the brain via the olfactory nerve; however, SARS-CoV-2 is only rarely detected in the central nervous system of COVID-19 patients.


2020 ◽  
Vol 8 (5) ◽  
pp. 789
Author(s):  
Aitor Rizo-Liendo ◽  
Ines Sifaoui ◽  
Luis Cartuche ◽  
Iñigo Arberas-Jiménez ◽  
María Reyes-Batlle ◽  
...  

Naegleria fowleri is an opportunistic pathogenic free-living amoeba which is able to rapidly colonize the central nervous system (CNS) and causes a lethal infection known as primary amoebic meningoencephalitis (PAM). Furthermore, more than 98% of the known cases of PAM are fatal and affect mainly children under 12 and young adults. Until now, no fully effective therapeutic agents against N. fowleri are available and hence the urgent need to find novel agents to treat PAM. At present, PAM therapy is based on the combination of amphotericin B, miltefosine, among others, with unwanted toxic effects. Recently, our team isolated various indolocarbazoles (ICZs) from the culture of a mangrove strain of Streptomyces sanyensis which showed activity against kinetoplastids and the Acanthamoeba genus. Hence, in this study, the activity of the previously isolated ICZs, staurosporine (STS), 7-oxostaurosporine (7OSTS), 4′-demethylamino-4′-oxostaurosporine, and streptocarbazole B, was evaluated against two type strains of N. fowleri. Furthermore, the performed activity assays revealed that STS was the most active ICZ presenting an inhibitory concentration 50 (IC50) of 0.08 ± 0.02 µM (SI 109.3). Moreover, STS induced programmed cell death (PCD) in the treated amoebae by triggering DNA condensation, mitochondrial disfunction, cell membrane disruption, and reactive oxygen species (ROS) generation. Therefore, STS could be a promising therapeutic agent against PAM.


Author(s):  
Yumei Luo ◽  
Mimi Zhang ◽  
Yapei Chen ◽  
Yaoyong Chen ◽  
Detu Zhu

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid international spread has caused the coronavirus disease 2019 (COVID-19) pandemics, which is a global public health crisis. Thus, there is an urgent need to establish biological models to study the pathology of SARS-CoV-2 infection, which not only involves respiratory failure, but also includes dysregulation of other organs and systems, including the brain, heart, liver, intestines, pancreas, kidneys, eyes, and so on. Cellular and organoid models derived from human induced pluripotent stem cells (iPSCs) are ideal tools for in vitro simulation of viral life cycles and drug screening to prevent the reemergence of coronavirus. These iPSC-derived models could recapitulate the functions and physiology of various human cell types and assemble the complex microenvironments similar with those in the human organs; therefore, they can improve the study efficiency of viral infection mechanisms, mimic the natural host-virus interaction, and be suited for long-term experiments. In this review, we focus on the application of in vitro iPSC-derived cellular and organoid models in COVID-19 studies.


2021 ◽  
Vol 13 ◽  
Author(s):  
Femke M. Feringa ◽  
Rik van der Kant

While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body’s cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer’s disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer’s disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.


Sign in / Sign up

Export Citation Format

Share Document