The Identification of the Enzymes That Catalyse the Oxidation of Glyoxylate to Oxalate in the 100 000 g Supernatant Fraction of Human Hyperoxaluric and Control Liver and Heart Tissue

1973 ◽  
Vol 44 (3) ◽  
pp. 227-241 ◽  
Author(s):  
Dorothy A. Gibbs ◽  
R. W. E. Watts

1. The enzymic oxidation of glyoxylate to oxalate in the soluble (100 000 g supernatant) fraction of liver and heart tissue from a patient with primary hyperoxaluria and from a non-hyperoxaluric subject have been studied. 2. An oxidized nicotinamide—adenine dinucleotide (NAD+)-dependent and a non-NAD+-dependent oxidation of glyoxylate to oxalate were observed in the liver tissue from both sources. 3. Evidence is presented that lactate dehydrogenase has a major role in catalysing the reaction in both of the tissues studied. The non-NAD+-dependent oxidations which are catalysed by xanthine oxidase and glycollate oxidase in the liver are relatively unimportant, and they were not detected in the heart. 4. An enzyme that catalyses the oxidation of glycollate was also demonstrated in liver tissue. This had a different electrophoretic mobility from the lactate dehydrogenase isoenzymes. 5. These findings are discussed with particular reference to human primary hyperoxaluria in which excessive oxalate synthesis occurs.

1967 ◽  
Vol 105 (2) ◽  
pp. 701-707 ◽  
Author(s):  
Betty M. Dean ◽  
R. W. E. Watts ◽  
Wendy J. Westwick

1. The metabolism of [1−14C]glyoxylate to carbon dioxide, glycine, oxalate, serine, formate and glycollate was investigated in hyperoxaluric and control subjects' kidney and liver tissue in vitro. 2. Only glycine and carbon dioxide became significantly labelled with 14C, and this was less in the hyperoxaluric patients' kidney tissue than in the control tissue. 3. Liver did not show this difference. 4. The metabolism of [1−14C]glycollate was also studied in the liver tissue; glyoxylate formation was demonstrated and the formation of 14CO2 from this substrate was likewise unimpaired in the hyperoxaluric patients' liver tissue in these experiments. 5. Glycine was not metabolized by human kidney, liver or blood cells under the conditions used. 6. These observations show that glyoxylate metabolism by the kidney is impaired in primary hyperoxaluria.


2021 ◽  
Vol 22 (13) ◽  
pp. 6792
Author(s):  
Dusan Todorovic ◽  
Marija Stojanovic ◽  
Ana Medic ◽  
Kristina Gopcevic ◽  
Slavica Mutavdzin ◽  
...  

The aim of this study was to investigate the effect of the application of homocysteine as well as its effect under the condition of aerobic physical activity on the activities of matrix metalloproteinases (MMP), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) in cardiac tissue and on hepato-renal biochemical parameters in sera of rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C: 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.); H: homocysteine 0.45 µmol/g b.w./day s.c.; CPA saline (0.9% NaCl 0.2 mL/day s.c.) and a program of physical activity on a treadmill; and HPA homocysteine (0.45 µmol/g b.w./day s.c.) and a program of physical activity on a treadmill. Subcutaneous injection of substances was applied 2 times a day at intervals of 8 h during the first two weeks of experimental protocol. Hcy level in serum was significantly higher in the HPA group compared to the CPA group (p < 0.05). Levels of glucose, proteins, albumin, and hepatorenal biomarkers were higher in active groups compared with the sedentary group. It was demonstrated that the increased activities of LDH (mainly caused by higher activity of isoform LDH2) and mMDH were found under the condition of homocysteine-treated rats plus aerobic physical activity. Independent application of homocysteine did not lead to these changes. Physical activity leads to activation of MMP-2 isoform and to increased activity of MMP-9 isoform in both homocysteine-treated and control rats.


Reproduction ◽  
1972 ◽  
Vol 30 (3) ◽  
pp. 425-431 ◽  
Author(s):  
C. PATTERSON ◽  
C. J. MASTERS

Author(s):  
Michelle Steicke ◽  
Guang Yang ◽  
Tam Nguyen Dinh ◽  
Matthew Dunster-Jones ◽  
Owen Sargisson ◽  
...  

Methanol, ethanol and formalin are commonly used as fixatives to preserve biological tissues from decay in the preparation of histological sections. Fixation of the inner layers of the tissue depends on the ability of the fixative to diffuse into the tissue. It is unknown whether methanol penetrates tissues at similar rates to other fixatives. This study aimed to compare the penetration rates of methanol, ethanol and formalin into bovine heart and liver tissues. The penetration distance and tissue shrinkage or expansion were measured by analysing the digital images of tissue before and after immersion in different fixatives for 1, 2, 6 or 10 h. Data were analysed using two-way ANOVA, followed by Bonferroni’s post-hoc test. The penetration distance of methanol was significantly greater in both heart and liver tissues compared with that of ethanol (N=4, P<0.001). Methanol or ethanol immersion led to similar shrinkage of both tissues (P>0.05). The penetration rate of formalin was similar to that of ethanol in both tissues however it was significantly slower than methanol (N=4, P<0.005 in the heart; P<0.001 in the liver). The mean penetration coefficients of methanol, formalin and ethanol in the heart tissue were 2.609, 1.994 and 1.801, respectively, and 3.012, 2.153 and 2.113, respectively, in the liver tissue. The penetration coefficient of methanol was significantly greater than that of ethanol or formalin in both tissues (P<0.001 for each comparison). In conclusion, methanol penetrates tissue significantly faster than ethanol and formalin.


Sign in / Sign up

Export Citation Format

Share Document