glyoxylate metabolism
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Elena Jean Forchielli ◽  
Daniel Jonathan Sher ◽  
Daniel Segre

Microbial communities, through their metabolism, drive carbon cycling in marine environments. These complex communities are composed of many different microorganisms including heterotrophic bacteria, each with its own nutritional needs and metabolic capabilities. Yet, models of ecosystem processes typically treat heterotrophic bacteria as a "black box", which does not resolve metabolic heterogeneity nor address ecologically important processes such as the successive modification of different types of organic matter. Here we directly address the heterogeneity of metabolism by characterizing the carbon source utilization preferences of 63 heterotrophic bacteria representative of several major marine clades. By systematically growing these bacteria on 10 media containing specific subsets of carbon sources found in marine biomass, we obtained a phenotypic fingerprint that we used to explore the relationship between metabolic preferences and phylogenetic or genomic features. At the class level, these bacteria display broadly conserved patterns of preference for different carbon sources. Despite these broad taxonomic trends, growth profiles correlate poorly with phylogenetic distance or genome-wide gene content. However, metabolic preferences are strongly predicted by a handful of key enzymes that preferentially belong to a few enriched metabolic pathways, such as those involved in glyoxylate metabolism and biofilm formation. We find that enriched pathways point to enzymes directly involved in the metabolism of the corresponding carbon source and suggest potential associations between metabolic preferences and other ecologically-relevant traits. The availability of systematic phenotypes across multiple synthetic media constitutes a valuable resource for future quantitative modeling efforts and systematic studies of inter-species interactions.


2021 ◽  
Vol 22 (19) ◽  
pp. 10435
Author(s):  
Yingning Wang ◽  
Fang Ma ◽  
Jixian Yang ◽  
Haijuan Guo ◽  
Delin Su ◽  
...  

Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl–CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.


2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Maria Dolores Moya-Garzon ◽  
Jose Antonio Gomez-Vidal ◽  
Alfonso Alejo-Armijo ◽  
Joaquin Altarejos ◽  
Juan Roberto Rodriguez-Madoz ◽  
...  

Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.


2018 ◽  
Vol 19 (8) ◽  
pp. 2444 ◽  
Author(s):  
Guoping Wang ◽  
Jie Kong ◽  
Dandan Cui ◽  
Hongbo Zhao ◽  
Puyan Zhao ◽  
...  

Ralstonia solanacearum is a soil-borne, plant xylem-infecting pathogen that causes the devastating bacterial wilt (BW) disease in a number of plant species. In the present study, two R. solanacearum strains with different degrees of aggressiveness―namely RsH (pathogenic to Hawaii 7996, a tomato cultivar resistant against most strains) and RsM (non-pathogenic to Hawaii 7996) were identified. Phylogenetic analysis revealed that both RsM and RsH belonged to phylotype I. To further elucidate the underlying mechanism of the different pathotypes between the two strains, we performed a comparative proteomics study on RsM and RsH in rich and minimal media to identify the change in the level of protein abundance. In total, 24 differential proteins were identified, with four clusters in terms of protein abundance. Further bioinformatics exploration allowed us to classify these proteins into five functional groups. Notably, the pathogenesis of RsM and RsH was particularly characterized by a pronounced difference in the abundance of virulence- and metabolism-related proteins, such as UDP-N-acetylglucosamine 2-epimerase (epsC) and isocitrate lyase (ICL), which were more abundant in the high pathogenicity strain RsH. Thus, we propose that the differences in pathogenicity between RsM and RsH can possibly be partially explained by differences in extracellular polysaccharide (EPS) and glyoxylate metabolism-related proteins.


Author(s):  
Alexandre Lobo-da-Cunha ◽  
Elsa Oliveira ◽  
Ângela Alves ◽  
Gonçalo Calado

Peroxisomes are cytoplasmic organelles involved in fatty acid oxidation, ether-phospholipids biosynthesis, glyoxylate metabolism and purine catabolism among other metabolic pathways. However, these organelles are still poorly studied in molluscs. During a light and electron microscopy study of the digestive glands of cephalaspidean sea slugs unusually large peroxisomes reaching about 5 µm in diameter were found in basophilic cells of Philinopsis depicta (Aglajidae), being among the biggest ever reported in metazoan cells. These round or oval peroxisomes were clearly visible with the light microscope, and their diamond shaped core was strongly stained by the tetrazonium coupling reaction for protein detection. However, in the basophilic cells of Aglaja tricolorata, another aglajid cephalaspidean, peroxisomes were more variable in shape and no bigger than 1 µm in length. Round peroxisomes with a diameter of about 0.5 µm were common in basophilic cells of Philine quadripartita (Philinidae) and Haminoea navicula (Haminoidae), whereas in Bulla striata (Bullidae) these organelles frequently had a diameter of between 1.0 and 1.5 µm. Peroxisomes were larger in basophilic cells than in digestive ones. In all these species, the electron-dense peroxisomal cores were diamond-shaped, and in H. navicula two cores could be seen in each peroxisome. The abundance and large size of peroxisomes in the digestive gland points out the importance of these organelles in the metabolism of this organ.


2016 ◽  
Vol 67 (10) ◽  
pp. 3041-3052 ◽  
Author(s):  
Younès Dellero ◽  
Mathieu Jossier ◽  
Jessica Schmitz ◽  
Veronica G. Maurino ◽  
Michael Hodges

2013 ◽  
Vol 95 ◽  
pp. 168-176 ◽  
Author(s):  
Christian Blume ◽  
Christof Behrens ◽  
Holger Eubel ◽  
Hans-Peter Braun ◽  
Christoph Peterhansel

Sign in / Sign up

Export Citation Format

Share Document