Experimental Mouse Muscle Damage: The Importance of External Calcium

1984 ◽  
Vol 66 (3) ◽  
pp. 317-322 ◽  
Author(s):  
D. A. Jones ◽  
M. J. Jackson ◽  
G. McPhail ◽  
R. H. T. Edwards

1. The involvement of extracellular calcium in experimental muscle damage has been studied in an isolated mouse soleus muscle preparation. 2. The enzyme efflux and ultrastructural damage seen after excessive contractile activity were markedly reduced when the extracellular calcium was withdrawn. Low extracellular calcium also protected against the large enzyme efflux seen after treatment with low concentrations of detergent. 3. Treatment of the muscle with the calcium ionophore A 23187 caused significant release of enzyme from the muscle. 4. Nifedipine did not prevent the enzyme release after stimulation and although in some circumstances verapamil appeared to have some protective effect this was probably due to a local anaesthetic action on the muscle and not to any specific effect on calcium movement. 5. It is concluded that extracellular calcium is important in mediating at least the two forms of muscle damage studied here.

1991 ◽  
Vol 80 (6) ◽  
pp. 559-564 ◽  
Author(s):  
M. J. Jackson ◽  
M. H. Brooke ◽  
K. Kaiser ◽  
R. H. T. Edwards

1. The release of glutathione has been studied in comparison with the release of creatine kinase from isolated rat soleus muscles subjected to certain forms of experimental damage. 2. Excessive electrically stimulated contractile activity or treatment of muscles with the mitochondrial inhibitor, 2,4-dinitrophenol, induced a substantial release of both creatine kinase and glutathione and a reduction in the total glutathione content of the muscle. The time course of this release and depletion indicates that the efflux of the two molecules is not directly related and that a reduction in muscle glutathione content does not occur before cytosolic enzyme release. 3. 2,4-Dinitrophenol-stimulated release of creatine kinase was significantly reduced by the omission of external calcium from the incubation media, but glutathione release and depletion was relatively unaffected by this. Deliberate elevation of the muscle intracellular calcium content with the calcium ionophore, A23187, induced a substantial loss of creatine kinase, but had no significant effect on the release of glutathione. 4. Muscle biopsies from patients with Duchenne muscular dystrophy were found to have an elevated content of glutathione and an equivalent protein-thiol content compared with control subjects. 5. We conclude that, although release of glutathione from skeletal muscle occurs after excessive contractile activity or inhibition of mitochondrial metabolism, this is not a key step in the damaging processes leading to cytosolic enzyme release, neither is it relevant to the ongoing damage to skeletal muscle which occurs in patients with Duchenne muscular dystrophy.


1983 ◽  
Vol 245 (3) ◽  
pp. C196-C202 ◽  
Author(s):  
D. Chandler ◽  
G. Meusel ◽  
E. Schumaker ◽  
C. Stapleton

The ability of the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (FMLP) to stimulate beta-glucuronidase release and 45Ca2+ release from rabbit neutrophils was studied. FMLP stimulated enzyme release from cytochalasin B-treated cells either in the presence or the absence of extracellular calcium. Depletion of cell calcium, by exposure to either ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid or the calcium ionophore A23187, blocked the ability of FMLP to stimulate enzyme release and 45Ca2+ release in the absence of extracellular calcium. The ability of A23187 to lower the 45Ca2+ content of neutrophils, to block FMLP-stimulated 45Ca2+ release, and to inhibit FMLP-stimulated enzyme release in the absence of calcium was dose dependent over the same concentration range (10(-8) to 10(-6) M A23187) for all three actions. In contrast, FMLP stimulated enzyme release from A23187-treated cells, provided that extracellular calcium was present. This secretory response was normal as judged by cell ultrastructure and FMLP dose-response relationships. It is concluded that A23187 depletes a pool of intracellular calcium usually released by FMLP and that release of calcium from this pool is necessary for initiation of enzyme secretion in the absence of extracellular calcium.


1979 ◽  
Vol 90 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Sumio Shima ◽  
Yoshiko Kawashima ◽  
Masanao Hirai

ABSTRACT Effects of ACTH and calcium on cyclic AMP and steroid production by the zona fasciculata-reticularis (the decapsulated fraction) from the rat adrenal cortex have been studied. Increasing concentrations of extracellular calcium enhanced the action of ACTH on cyclic AMP and steroid production. These effects of ACTH with calcium were prevented by lanthanum, but not by tetracaine or verapamil, suggesting that ACTH stimulation may be mediated by calcium through a process not involving the tetracaine- or verapamil-vulnerable step(s) of the calcium current. High concentrations of external calcium itself increased cyclic AMP accumulation without any increase in steroidogenesis. A calcium ionophore, X537A was stimulatory for steroidogenesis but inhibitory with respect to cyclic AMP accumulation. Considered together with the findings of steroidogenic stimulation by low concentrations of ACTH without cyclic AMP increase, these results suggest that ACTH primarily increases intracellular calcium mobilization thus stimulating directly the steroidogenesis, which is independent of the cyclic AMP system. Relatively high concentrations of ACTH activate the adenylate cyclase, which depends on extracellular calcium to increase cyclic AMP levels and stimulation of steroidogenesis by the decapsulated fractions of the adrenal cortex.


1994 ◽  
Vol 71 (03) ◽  
pp. 347-352 ◽  
Author(s):  
Jean-Pierre Loza ◽  
Victor Gurewich ◽  
Michael Johnstone ◽  
Ralph Pannell

SummaryClots formed from platelet rich plasma were found to be lysed more readily by low concentrations of pro-urokinase (pro-UK) than clots formed from platelet poor plasma. This was not a non-specific effect since the reverse occurred with tissue plasminogen activator. A mechanical explanation due to platelet-mediated clot retraction was excluded by experiments in which retraction was inhibited with cyto-chalasin B. Therefore, a platelet-mediated enzymatic mechanism was postulated to explain the promotion of fibrinolysis. Casein autography of isolated platelets revealed a ≈ 90 kDa band of activity which comigrated with plasma prekallikrein (PK)/kallikrein, a known activator of pro-UK. Furthermore, treatment of platelets with plasma PK activator (PPA), consisting essentially of factor XIIa, induced activation of pro-UK and of chromomgenic substrate for kallikrein (S-2302). This activity corresponded to approximately 40-200 pM kallikrein per 10 8 washed and gel filtered platelets per ml. The activation of pro-UK by PPA-pretreated platelets was dose-dependent and inhibited by soybean trypsin inhibitor but not by bdellin, a specific inhibitor of plasmin, nor by the corn inhibitor of factor XIIa. Kinetic analysis of pro-UK activation by kallikrein showed promotion of the reaction by platelets. The KM of the reaction was reduced by platelets by ≈ 7-fold, while the kcat was essentially unchanged. In conclusion, PK was shown to be tightly associated with platelets where it can be activated by factor XIIa during clotting. The activation of pro-UK by platelet-bound kallikrein provides an explanation for the observed platelet mediated promotion of pro-UK-induced clot lysis. Since pro-UK and plasminogen have also been shown to be associated with platelets, the present findings suggest a mechanism by which the factor Xlla-dependent intrinsic pathway of fibrinolysis can be localized and targeted to a thrombus.


1987 ◽  
Vol 58 (02) ◽  
pp. 737-743 ◽  
Author(s):  
Frarnçois Lanza ◽  
Alain Beretz ◽  
Martial Kubina ◽  
Jean-Pierre Cazenave

SummaryIncorporation into human platelets of the calcium fluorescent indicators quin2 or fura-2 at low concentrations used to measure intracellular free calcium leads to the potentiation of the effects of agonists on platelets. This was shown by increased aggregatory and secretory responses of quin2 or fura-2 loaded platelets after stimulation with ADP, PAP and with low concentrations of thrombin, collagen, the endoperoxide analog U-46619 and the calcium ionophore A 23187. Quin2 and fura-2 mediated platelet sensitisation could be due to altered arachidonic acid metabolism since it was inhibited by prior treatment with the cydooxygenase inhibitor acetylsalicylate. In contrast, platelets loaded with higher concentrations of calcium chelators exhibited diminished aggregation responses to all aggregating agents. This latter effect was accompanied by increased fluidity of the platelet plasma membrane bilayer and by the exposure of a new pool of membranes to the outer surface of platelets, as monitored with trimethylammonium- diphenylhexatriene (TMA-DPH) in platelets loaded with the non-fluorescent calcium probe analog MAPT. In contrast, low concentrations of quin2 did not potentiate shape change of platelets activated with ADP. Thus, shape change and aggregation can be influenced separately by intracellular Ca2+ chelators. We conclude that platelet responses are altered by the incorporation of intracellular calcium chelators at concentrations used to monitor intracellular calcium changes.


1991 ◽  
Vol 71 (3) ◽  
pp. 999-1004 ◽  
Author(s):  
J. H. Van der Meulen ◽  
H. Kuipers ◽  
J. Drukker

The relationship between the amount of exercise-induced muscle damage and the release of creatine kinase (CK), aspartate aminotransferase (AST), and lactate dehydrogenase (LD) was studied. Gender differences in enzyme release and histological damage were also studied. Serial pre- and postexercise blood samples were drawn from untrained male and female catheterized Wistar rats that ran 1.5 or 2.5 h on a treadmill (incline 10 degrees). Three days postexercise, muscle damage was quantified morphometrically in five different hindlimb and forearm muscles. The 1.5 and 2.5 h of exercise elicited histological damage only in the soleus muscle. Significant plasma CK, AST, and LD elevations were found immediately postexercise both in male and female rats. However, the enzyme release was significantly greater in males than in females. Part of this could be explained by differences in clearance rates between males and females. No gender difference in amount of histological damage was found. The actual volume of histological muscle damage was significantly less than the calculated muscle damage based on enzyme release. An increase in the exercise duration from 1.5 to 2.5 h resulted in a disproportional increase in both histological muscle damage and muscle enzyme release. From the present study it is concluded that muscle enzyme release is not clearly reflected in histological muscle damage.


1986 ◽  
Vol 102 (4) ◽  
pp. 1459-1463 ◽  
Author(s):  
R I Sha'afi ◽  
J Shefcyk ◽  
R Yassin ◽  
T F Molski ◽  
M Volpi ◽  
...  

The addition of the calcium ionophore A23187 to rabbit neutrophils increases the amount of actin associated with the cytoskeleton regardless of the presence or absence of calcium in the incubation medium. In the presence of extracellular calcium, the effect of A23187 is biphasic with respect to concentration. The action of the ionophore is rapid, transient, and is inhibited by pertussis toxin, hyperosmolarity, and quinacrine. On the other hand, the addition of pertussis toxin or hyperosmolarity has small if any, effect on the rise in intracellular calcium produced by A23187. While quinacrine does not affect the fMet-Leu-Phe-induced increase in cytoskeletal actin and the polyphosphoinositide turnover, its addition inhibits completely the stimulated increase in Ca-influx produced by the same stimulus. The results presented here suggest that a rise in the intracellular concentration of free calcium is neither necessary nor sufficient for the stimulated increase in cytoskeletal-associated actin. A possible relationship between the lipid remodeling stimulated by chemoattractants and the increased cytoskeletal actin is discussed.


1986 ◽  
Vol 103 (3) ◽  
pp. 995-1005 ◽  
Author(s):  
M S Ecob-Prince ◽  
M Jenkison ◽  
G S Butler-Browne ◽  
R G Whalen

When adult mouse muscle fibers are co-cultured with embryonic mouse spinal cord, the muscle regenerates to form myotubes that develop cross-striations and contractions. We have investigated the myosin heavy chain (MHC) isoforms present in these cultures using polyclonal antibodies to the neonatal, adult fast, and slow MHC isoforms of rat (all of which were shown to react specifically with the analogous mouse isoforms) in an immunocytochemical assay. The adult fast MHC was absent in newly formed myotubes but was found at later times, although it was absent when the myotubes myotubes were cultured without spinal cord tissue. When nerve-induced muscle contractions were blocked by the continuous presence of alpha-bungarotoxin, there was no decrease in the proportion of fibers that contained adult fast MHC. Neonatal and slow MHC were found at all times in culture, even in the absence of the spinal cord, and so their expression was not thought to be nerve-dependent. Thus, in this culture system, the expression of adult fast MHC required the presence of the spinal cord, but was probably not dependent upon nerve-induced contractile activity in the muscle fibers.


1992 ◽  
Vol 82 (4) ◽  
pp. 455-459 ◽  
Author(s):  
A. McArdle ◽  
R. H. T. Edwards ◽  
M. J. Jackson

1. Accumulation of calcium by extensor digitorum longus muscles from dystrophin-deficient mdx and control C57BL/10 mice has been studied in vitro by measurements of total muscle calcium and by following the retention of 45Ca resulting from the incubation of muscles with the isotope for up to 2 h. 2. The rate of influx of calcium, calculated from the retention of 45Ca, was linear over 2 h in muscles at rest with no significant difference between mdx and control muscles. 3. Repetitive tetanic stimuli caused a substantial increase in 45Ca flux into both mdx and control muscles. This elevated rate of influx was maintained by control muscle, but not by mdx muscle after stimulation resulting in a significantly smaller total calcium flux into mdx muscle compared with control muscle by 1 h after stimulation. Similar changes were also seen in the total muscle calcium content of mdx and control muscles. Comparison of these results with those for loss of cytosolic creatine kinase previously reported (McArdle, A., Edwards, R.H.T. & Jackson, M.J. Clin. Sci. 1991; 80, 367-71) [1] indicate that control and dystrophin-deficient muscles release equivalent amounts of intracellular creatine kinase in response to the same accumulation of intracellular calcium. 4. These results therefore do not support the hypotheses that dystrophin deficiency in muscle leads to increased calcium influx during contractile activity, or that dystrophin-deficient muscle shows any inherent increased permeability to cytosolic proteins.


Sign in / Sign up

Export Citation Format

Share Document